\[\boxed{\mathbf{731}\mathbf{.}}\]
\[1)\ y = \sin|x|\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \sin x \leq 1\]
\[- 1 \leq \sin|x| \leq 1\]
\[E(y) = \lbrack - 1;\ 1\rbrack;\]
\[\textbf{в)}\ y(x + T) = y(x)\]
\[\sin|x + T| = \sin|x|\]
\[T = 2\pi.\]
\[\textbf{г)}\ Функция\ четная:\]
\[y( - x) = \sin| - x| = \sin|x| = y(x).\]
\[\textbf{д)}\ \sin|x| = 0\]
\[|x| = \arcsin 0 + \pi n = \pi n\]
\[x = \pm \pi n = \pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[\sin|x| = 1;\]
\[|x| = \arcsin 1 + 2\pi n = \frac{\pi}{2} + 2\pi n;\]
\[x = \frac{\pi}{2} + 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[\sin|x| = - 1\]
\[|x| = - \arcsin 1 + 2\pi n =\]
\[= - \frac{\pi}{2} + 2\pi n\]
\[x = - \frac{\pi}{2} + 2\pi n.\]
\[2)\ y = \left| \sin x \right|\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \sin x \leq 1\]
\[0 \leq \left| \sin x \right| \leq 1\]
\[E(y) = \lbrack 0;\ 1\rbrack;\]
\[\textbf{в)}\ y(x + T) = y(x)\]
\[\left| \sin(x + T) \right| = \left| \sin x \right|\]
\[\left\{ \begin{matrix} \sin(x + T) = \sin x\text{\ \ \ \ } \\ \sin(x + T) = - \sin x \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} T = 2\pi\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \sin(x + T) = \sin(x + \pi) \\ \end{matrix} \right.\ \text{\ \ }\]
\[\left\{ \begin{matrix} T = 2\pi \\ T = \pi\ \ \\ \end{matrix} \right.\ \]
\[T = \pi.\]
\[\textbf{г)}\ Функция\ четная:\]
\[y( - x) = \left| \sin( - x) \right| = \left| - \sin x \right| =\]
\[= \left| \sin x \right| = y(x).\]
\[\textbf{д)}\ \left| \sin x \right| = 0\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[\left| \sin x \right| = 1\]
\[\sin x = \pm 1\]
\[x_{1} = \arcsin 1 + 2\pi n = \frac{\pi}{2} + 2\pi n;\]
\[x_{2} = - \arcsin 1 + 2\pi n =\]
\[= - \frac{\pi}{2} + 2\pi n;\]
\[x = \frac{\pi}{2} + \pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[x = \pi n.\]