Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 703

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 703

\[\boxed{\mathbf{703}\mathbf{.}}\]

\[1)\ y = \sin{2x}\ и\ \ T = \pi:\]

\[y(x + \pi) = \sin\left( 2 \bullet (x + \pi) \right) =\]

\[= \sin(2x + 2\pi) = \sin{2x} = y(x).\]

\[2)\ y = \cos\frac{x}{2}\text{\ \ }и\ \ T = 4\pi:\]

\[y(x + 4\pi) = \cos\frac{x + 4\pi}{2} =\]

\[= \cos\left( \frac{x}{2} + 2\pi \right) = \cos\frac{x}{2} = y(x).\]

\[3)\ y = tg\ 2x\ \ и\ \ T = \frac{\pi}{2}:\]

\[y\left( x + \frac{\pi}{2} \right) = tg\left( 2 \bullet \left( x + \frac{\pi}{2} \right) \right) =\]

\[= \text{tg\ }(2x + \pi) = tg\ 2x = y(x).\]

\[4)\ y = \sin\frac{4x}{5}\text{\ \ }и\ \ T = \frac{5\pi}{2}:\]

\[y\left( x + \frac{5\pi}{2} \right) = \sin\left( \frac{4}{5} \bullet \left( x + \frac{5\pi}{2} \right) \right) =\]

\[= \sin\left( \frac{4x}{5} + 2\pi \right) = \sin\frac{4x}{5} = y(x).\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам