\[\boxed{\mathbf{643}\mathbf{.}}\]
\[1)\ \sqrt{5\cos x - \cos{2x}} = - 2\sin x\]
\[5\cos x - \cos{2x} = 4\sin^{2}x\]
\[5\cos x - \left( \cos^{2}x - \sin^{2}x \right) - 4\sin^{2}x = 0\]
\[5\cos x - \cos^{2}x + \sin^{2}x - 4\left( 1 - \cos^{2}x \right) = 0\]
\[5\cos x - \cos^{2}x + \sin^{2}x - 4 + 4\cos^{2}x = 0\]
\[5\cos x + 3\cos^{2}x + \sin^{2}x - 4 = 0\]
\[5\cos x + 1 + 2\cos^{2}x - 4 = 0\]
\[2\cos^{2}x + 5\cos x - 3 = 0\]
\[y = \cos x:\]
\[2y^{2} + 5y - 3 = 0\]
\[D = 25 + 24 = 49\]
\[y_{1} = \frac{- 5 - 7}{2 \bullet 2} = - 3;\]
\[y_{2} = \frac{- 5 + 7}{2 \bullet 2} = \frac{1}{2}.\]
\[1)\ \cos x = - 3\]
\[корней\ нет.\]
\[2)\ \cos x = \frac{1}{2}\]
\[x = \pm \arccos\frac{1}{2} + 2\pi n\]
\[x = \pm \frac{\pi}{3} + 2\pi n.\]
\[Проверка:\]
\[- 2\sin\left( - \frac{\pi}{3} + 2\pi n \right) = 2\sin\frac{\pi}{3} =\]
\[= 2 \bullet \frac{\sqrt{3}}{2} = \sqrt{3};\]
\[- 2\sin\left( \frac{\pi}{3} + 2\pi n \right) = - 2\sin\frac{\pi}{3} =\]
\[= - 2 \bullet \frac{\sqrt{3}}{2} = - \sqrt{3} - не\ подходит.\]
\[Ответ:\ - \frac{\pi}{3} + 2\pi n.\]
\[2)\ \sqrt{\cos x + \cos{3x}} = - \sqrt{2}\cos x\]
\[\sqrt{2 \bullet \cos\frac{3x + x}{2} \bullet \cos\frac{3x - x}{2}} = - \sqrt{2} \bullet \cos x\]
\[\sqrt{\cos{2x} \bullet \cos x} = - \cos x\]
\[(\cos^{2}x - \sin^{2}x) \bullet \cos x = \cos^{2}x\]
\[\left( \cos^{2}x - \left( 1 - \cos^{2}x \right) \right) \bullet \cos x = \cos^{2}x\]
\[\left( 2\cos^{2}x - 1 \right) \bullet \cos x - \cos^{2}x = 0\]
\[\cos x \bullet \left( 2\cos^{2}x - \cos x - 1 \right) = 0\]
\[y = \cos x:\]
\[2y^{2} - y - 1 = 0\]
\[D = 1 + 8 = 9\]
\[y_{1} = \frac{1 - 3}{2 \bullet 2} = - \frac{1}{2};\]
\[y_{2} = \frac{1 + 3}{2 \bullet 2} = 1.\]
\[1)\ \cos x = 0\]
\[x = \arccos 0 + \pi n\]
\[x = \frac{\pi}{2} + \pi n.\]
\[2)\ \cos x = - \frac{1}{2}\]
\[x = \pm \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n\]
\[x = \pm \left( \pi - \frac{\pi}{3} \right) + 2\pi n\]
\[x = \pm \frac{2\pi}{3} + 2\pi n.\]
\[3)\ \cos x = 1\]
\[x = \arccos 1 + \pi n = \pi n.\]
\[Проверка:\]
\[- \sqrt{2}\cos\left( \frac{\pi}{2} + \pi n \right) = - \sqrt{2} \bullet 0 = 0\]
\[- \sqrt{2}\cos\left( \pm \frac{2\pi}{3} + 2\pi n \right) =\]
\[= - \sqrt{2}\cos\left( \frac{2\pi}{3} \right) =\]
\[= - \sqrt{2}\cos\left( \pi - \frac{\pi}{3} \right) =\]
\[= \sqrt{2}\cos\frac{\pi}{3} = \frac{\sqrt{2}}{2};\]
\[- \sqrt{2}\cos\left( \text{πn} \right) = - \sqrt{2} \bullet 1 =\]
\[= - \sqrt{2} - не\ подходит.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n;\ \ \pm \frac{2\pi}{3} + 2\pi n.\]