Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 621

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 621

\[\boxed{\mathbf{621}\mathbf{.}}\]

\[1)\ 2\cos^{2}x - \sin x + 1 = 0\]

\[2\left( 1 - \sin^{2}x \right) - \sin x + 1 = 0\]

\[2 - 2\sin^{2}x - \sin x + 1 = 0\]

\[2\sin^{2}x + \sin x - 3 = 0\]

\[y = \sin x:\]

\[2y^{2} + y - 3 = 0\]

\[D = + 24 = 25\]

\[y_{1} = \frac{- 1 - 5}{2 \bullet 2} = - \frac{3}{2};\]

\[y_{2} = \frac{- 1 + 5}{2 \bullet 2} = 1.\]

\[1)\ \sin x = - \frac{3}{2}\]

\[корней\ нет.\]

\[2)\ \sin x = 1\]

\[x = \arcsin 1 + 2\pi n = \frac{\pi}{2} + 2\pi n.\]

\[Ответ:\ \ \frac{\pi}{2} + 2\pi n.\]

\[2)\ 3\cos^{2}x - \sin x - 1 = 0\]

\[3\left( 1 - \sin^{2}x \right) - \sin x - 1 = 0\]

\[3 - 3\sin^{2}x - \sin x - 1 = 0\]

\[3\sin^{2}x + \sin x - 2 = 0\]

\[y = \sin x:\]

\[3y^{2} + y - 2 = 0\]

\[D = 1 + 24 = 25\]

\[y_{1} = \frac{- 1 - 5}{2 \bullet 3} = - 1;\]

\[y_{2} = \frac{- 1 + 5}{2 \bullet 3} = \frac{2}{3}.\]

\[1)\ \sin x = - 1\]

\[x = - \arcsin 1 + 2\pi n\]

\[x = - \frac{\pi}{2} + 2\pi n.\]

\[2)\ \sin x = \frac{2}{3}\]

\[x = ( - 1)^{n} \bullet \arcsin\frac{2}{3} + \pi n.\]

\[Ответ:\ - \frac{\pi}{2} + 2\pi n;\ \ \]

\[( - 1)^{n} \bullet \arcsin\frac{2}{3} + \pi n.\]

\[3)\ 4\sin^{2}x - \cos x - 1 = 0;\]

\[4\left( 1 - \cos^{2}x \right) - \cos x - 1 = 0\]

\[4 - 4\cos^{2}x - \cos x - 1 = 0\]

\[4\cos^{2}x + \cos x - 3 = 0\]

\[y = \cos x:\]

\[4y^{2} + y - 3 = 0\]

\[D = 1 + 48 = 49\]

\[y_{1} = \frac{- 1 - 7}{2 \bullet 4} = - 1;\text{\ \ }\]

\[y_{2} = \frac{- 1 + 7}{2 \bullet 4} = \frac{3}{4}.\]

\[1)\ \cos x = - 1\]

\[x = \pi - \arccos 1 + 2\pi n\]

\[x = \pi + 2\pi n.\]

\[2)\ \cos x = \frac{3}{4}\]

\[x = \pm \arccos\frac{3}{4} + 2\pi n.\]

\[Ответ:\ \ \pi + 2\pi n;\ \ \]

\[\pm \arccos\frac{3}{4} + 2\pi n.\]

\[4)\ 2\sin^{2}x + 3\cos x = 0;\]

\[2\left( 1 - \cos^{2}x \right) + 3\cos x = 0\]

\[2 - 2\cos^{2}x + 3\cos x = 0\]

\[2\cos^{2}x - 3\cos x - 2 = 0\]

\[y = \cos x:\]

\[2y^{2} - 3y - 2 = 0\]

\[D = 9 + 16 = 25\]

\[y_{1} = \frac{3 - 5}{2 \bullet 2} = - \frac{1}{2};\]

\[y_{2} = \frac{3 + 5}{2 \bullet 2} = 2.\]

\[1)\ \cos x = - \frac{1}{2}\]

\[x = \pm \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n\]

\[x = \pm \left( \pi - \frac{\pi}{3} \right) + 2\pi n\]

\[x = \pm \frac{2\pi}{3} + 2\pi n.\]

\[2)\ \cos x = 2\]

\[корней\ нет.\]

\[Ответ:\ \pm \frac{2\pi}{3} + 2\pi n.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам