\[\boxed{\mathbf{513}\mathbf{.}}\]
\[\textbf{а)}\sin^{2}{15{^\circ}} = \frac{1 - \cos(2 \bullet 15{^\circ})}{2} =\]
\[= \frac{1 - \cos{30{^\circ}}}{2}\]
\[\textbf{б)}\cos^{2}\frac{1}{4} = \frac{1 + \cos\left( 2 \bullet \frac{1}{4} \right)}{2} =\]
\[= \frac{1 + \cos\frac{1}{2}}{2}\]
\[\textbf{в)}\cos^{2}\left( \frac{\pi}{4} - a \right) =\]
\[= \frac{1 + \cos\left( 2 \bullet \left( \frac{\pi}{4} - a \right) \right)}{2} =\]
\[= \frac{1 + \cos\left( \frac{\pi}{2} - 2a \right)}{2} = \frac{1 + \sin{2a}}{2}\]
\[\textbf{г)}\sin^{2}\left( \frac{\pi}{4} + a \right) =\]
\[= \frac{1 - \cos\left( 2 \bullet \left( \frac{\pi}{4} + a \right) \right)}{2} =\]
\[= \frac{1 - \cos\left( \frac{\pi}{2} + 2a \right)}{2} = \frac{1 + \sin{2a}}{2}\]