Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 349

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 349

\[\boxed{\mathbf{349}\mathbf{.}}\]

\[1)\log_{x^{2}}9 + \log_{\sqrt{x}}4 = 2\]

\[\frac{1}{2}\log_{x}9 + \log_{x^{\frac{1}{2}}}4 = 2\]

\[\log_{x}9^{\frac{1}{2}} + 2\log_{x}4 = 2\]

\[\log_{x}\sqrt{9} + \log_{x}4^{2} = 2\]

\[\log_{x}3 + \log_{x}16 = 2\]

\[\log_{x}(3 \bullet 16) = 2\]

\[\log_{x}48 = \log_{x}x^{2}\]

\[x^{2} = 48\]

\[x = \pm \sqrt{48} = \pm 4\sqrt{3}\]

\[имеет\ смысл\ при:\]

\[x > 0;\text{\ \ }x \neq 1.\]

\[Ответ:\ \ x = 4\sqrt{3}.\]

\[2)\log_{x^{2}}16 - \log_{\sqrt{x}}7 = 2\]

\[\frac{1}{2}\log_{x}16 - \log_{x^{\frac{1}{2}}}7 = 2\]

\[\log_{x}16^{\frac{1}{2}} - 2\log_{x}7 = 2\]

\[\log_{x}\sqrt{16} - \log_{x}7^{2} = 2\]

\[\log_{x}4 - \log_{x}49 = 2\]

\[\log_{x}\frac{4}{49} = \log_{x}x^{2}\]

\[x^{2} = \frac{4}{49}\]

\[x = \pm \sqrt{\frac{4}{49}} = \pm \frac{2}{7}\]

\[имеет\ смысл\ при:\]

\[x > 0;\text{\ \ }x \neq 1.\]

\[Ответ:\ \ x = \frac{2}{7}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам