\[\boxed{\mathbf{247}\mathbf{.}}\]
\[1)\ 2^{- \sqrt{5}}:\]
\[- \sqrt{5} < 0\]
\[2^{- \sqrt{5}} < 2^{0}\]
\[2^{- \sqrt{5}} < 1.\]
\[2)\ \left( \frac{1}{2} \right)^{\sqrt{3}}:\]
\[\sqrt{3} > 0\]
\[\left( \frac{1}{2} \right)^{\sqrt{3}} < \left( \frac{1}{2} \right)^{0}\]
\[\left( \frac{1}{2} \right)^{\sqrt{3}} < 1.\]
\[3)\ \left( \frac{\pi}{4} \right)^{\sqrt{5} - 2}:\]
\[\pi \approx 3,14\ldots,\ значит\ \frac{\pi}{4} < 1\ \]
\[5 > 4\]
\[\sqrt{5} > 2\]
\[\sqrt{5} - 2 > 0\]
\[\left( \frac{\pi}{4} \right)^{\sqrt{5} - 2} < \left( \frac{\pi}{4} \right)^{0}\]
\[\left( \frac{\pi}{4} \right)^{\sqrt{5} - 2} < 1.\]
\[4)\ \left( \frac{1}{3} \right)^{\sqrt{8} - 3}:\]
\[8 < 9\]
\[\sqrt{8} < 3\]
\[\sqrt{8} - 3 < 0\]
\[\left( \frac{1}{3} \right)^{\sqrt{8} - 3} > \left( \frac{1}{3} \right)^{0}\]
\[\left( \frac{1}{3} \right)^{\sqrt{8} - 3} > 1.\]