\[\boxed{\mathbf{1623}\mathbf{.}}\]
\[f(x) = 4x^{2} + 8ax - 9;\]
\[g(x) = 4ax^{2} - 8x + a - 2;\]
\[Первая\ парабола:\]
\[x = - \frac{b}{2a} = - \frac{8a}{2 \bullet 4} = - \frac{8a}{8} = - a;\]
\[y = f( - a) = 4 \bullet a^{2} + 8a \bullet ( - a) - 9 =\]
\[= 4a^{2} - 8a^{2} - 9 = - 4a^{2} - 9.\]
\[Вторая\ парабола:\]
\[x = - \frac{b}{2a} = - \frac{- 8}{2 \bullet 4a} = \frac{8}{8a} = \frac{1}{a};\]
\[y = g\left( \frac{1}{a} \right) =\]
\[= 4a \bullet \frac{1}{a^{2}} - 8 \bullet \frac{1}{a} + a - 2 =\]
\[= \frac{4}{a} - \frac{8}{a} + a - 2 = a - \frac{4}{a} - 2.\]
\[Вершина\ первой\ параболы\ \]
\[всегда\ лежит\ ниже\ прямой\ \]
\[y = - 5:\]
\[- 4a^{2} - 9 < - 5\]
\[- 4a^{2} < 4\]
\[a^{2} > - 1\]
\[при\ любом\ значении\ x.\]
\[Вершина\ второй\ параболы\ \]
\[лежит\ ниже\ прямой\ y = - 5:\]
\[a - \frac{4}{a} - 2 < - 5\]
\[a + 3 - \frac{4}{a} < 0\ \ \ \ \ | \bullet a^{2}\]
\[a^{3} + 3a^{2} - 4a < 0\]
\[a\left( a^{2} + 3a - 4 \right) < 0\]
\[D = 9 + 16 = 25\]
\[a_{1} = \frac{- 3 - 5}{2} = - 4;\]
\[a_{2} = \frac{- 3 + 5}{2} = 1;\]
\[(a + 4) \bullet a \bullet (a - 1) < 0\]
\[a < - 4\ \ и\ \ 0 < a < 1.\]
\[Ответ:\ \ a < - 4;\ \ 0 < a < 1.\]