\[\boxed{\mathbf{1538}\mathbf{.}}\]
\[1)\ y = \sqrt{x - 1};y = 3 - x;y = 0:\]
\[\sqrt{x - 1} = 3 - x\]
\[x - 1 = 9 - 6x + x^{2}\]
\[x^{2} - 7x + 10 = 0\]
\[D = 49 - 40 = 9\]
\[x_{1} = \frac{7 - 3}{2} = 2;\]
\[x_{2} = \frac{7 + 3}{2} = 5.\]
\[Имеет\ решения\ при:\]
\[3 - x \geq 0\]
\[x \leq 3.\]
\[x - 1 \geq 0\]
\[x \geq 1.\]
\[x = 2.\]
\[\sqrt{x - 1} > 0\]
\[x - 1 \neq 0\]
\[x \neq 1.\]
\[3 - x > 0\]
\[x < 3.\]
\[S = \int_{1}^{2}(x - 1)^{\frac{1}{2}} + \int_{2}^{3}(3 - x) =\]
\[= \left. \ \left( (x - 1)^{\frac{3}{2}}\ :\frac{3}{2} \right) \right|_{1}^{2} + \left. \ \left( 3 \bullet \frac{x^{1}}{1} - \frac{x^{2}}{2} \right) \right|_{2}^{3} =\]
\[= \left. \ \left( \frac{2\sqrt{(x - 1)^{3}}}{3} \right) \right|_{1}^{2} + \left. \ \left( 3x - \frac{x^{2}}{2} \right) \right|_{2}^{3} =\]
\[= \frac{2}{3} - \frac{0}{3} + 9 - \frac{9}{2} - 6 + \frac{4}{2} =\]
\[= \frac{2}{3} - \frac{5}{2} + 3 = \frac{4 - 15 + 18}{6} =\]
\[= \frac{7}{6} = 1\frac{1}{6}.\]
\[Ответ:\ \ 1\frac{1}{6}.\]
\[2)\ y = - \frac{1}{x};\ \ \ y = x^{2};\ \ \ y = \frac{x^{2}}{8}:\]
\[- \frac{1}{x} = x^{2}\ \ \ \ \ | \bullet x;\]
\[- 1 = x^{3}\]
\[x = - 1.\]
\[- \frac{1}{x} = \frac{x^{2}}{8}\]
\[- 8 = x^{3}\]
\[x = - 2.\]
\[x^{2} = \frac{x^{2}}{8}\ \ \ \ \ | \bullet 8\]
\[8x^{2} = x^{2}\]
\[7x^{2} = 0\]
\[x = 0.\]
\[S = \int_{- 2}^{- 1}\left( - \frac{1}{x} - \frac{x^{2}}{8} \right) + \int_{- 1}^{0}\left( x^{2} - \frac{x^{2}}{8} \right) =\]
\[= \int_{- 2}^{- 1}\left( - \frac{1}{x} - \frac{x^{2}}{8} \right) + \int_{- 1}^{0}\left( \frac{7}{8}x^{2} \right) =\]
\[= \left. \ \left( - \ln x - \frac{1}{8} \bullet \frac{x^{3}}{3} \right) \right|_{- 2}^{- 1} + \left. \ \left( \frac{7}{8} \bullet \frac{x^{3}}{3} \right) \right|_{- 1}^{0} =\]
\[= \left. \ \left( - \ln x - \frac{x^{3}}{24} \right) \right|_{- 2}^{- 1} + \left. \ \left( \frac{7x^{3}}{24} \right) \right|_{- 1}^{0} =\]
\[= \ln\frac{- 2}{- 1} + \frac{1}{24} - \frac{8}{24} + \frac{0}{24} + \frac{7}{24} = \ln 2.\]
\[Ответ:\ \ \ln 2.\]