\[\boxed{\mathbf{1523}\mathbf{.}}\]
\[r\ - радиус\ основания;\]
\[h - высота\ цилиндра.\]
\[Диагональ\ осевого\ сечения\ \]
\[цилиндра\ совпадает\ с\ \]
\[диаметром\ шара:\]
\[(2r)^{2} + h^{2} = d^{2}\]
\[4r^{2} + h^{2} = (2R)^{2}\]
\[h^{2} = 4R^{2} - 4r^{2}\]
\[h = 2\sqrt{R^{2} - r^{2}}.\]
\[S(r) = 2\pi r \bullet h =\]
\[= 2\pi r \bullet 2\sqrt{R^{2} - r^{2}} =\]
\[= 4\left( \text{πr}\sqrt{R^{2} - r^{2}} \right);\]
\[= 4\pi \bullet \frac{\left( R^{2} - r^{2} \right) - r^{2}}{\sqrt{4R^{2} - r^{2}}} =\]
\[= 4\pi \bullet \frac{R^{2} - {2r}^{2}}{\sqrt{4R^{2} - r^{2}}}.\]
\[Промежуток\ возрастания:\]
\[R^{2} - 2r^{2} > 0\]
\[2r^{2} < R^{2}\]
\[r^{2} < \frac{R^{2}}{2}\]
\[- \frac{R}{\sqrt{2}} < r < \frac{R}{\sqrt{2}}.\]
\[r = \frac{R}{\sqrt{2}} - точка\ максимума.\]
\[Ответ:\ \ \frac{R}{\sqrt{2}}.\]