\[\boxed{\mathbf{1408}\mathbf{.}}\]
\[1)\log_{6}(2 - x) < \log_{6}(2x + 5)\]
\[2 - x < 2x + 5\]
\[- 3x < 3\]
\[x > - 1.\]
\[Имеет\ смысл\ при:\]
\[2 - x > 0\]
\[x < 2;\]
\[2x + 5 > 0;\]
\[x > - 2,5.\]
\[Ответ:\ \ - 1 < x < 2.\]
\[2)\log_{\frac{1}{3}}\left( x^{2} - 2 \right) \geq - 1\]
\[{\text{lo}g_{\frac{1}{3}}}\left( x^{2} - 2 \right) \geq \log_{\frac{1}{3}}\left( \frac{1}{3} \right)^{- 1}\]
\[x^{2} - 2 \leq 3\]
\[x^{2} \leq 5\]
\[- \sqrt{5} \leq x \leq \sqrt{5}.\]
\[Имеет\ смысл\ при:\]
\[x^{2} - 2 > 0\]
\[x^{2} > 2\]
\[x < - \sqrt{2}\text{\ \ }и\ \ x > \sqrt{2}.\]
\[Ответ:\ \ - \sqrt{5} \leq x < - \sqrt{2};\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\sqrt{2} < x \leq \sqrt{5}.\]