Решебник по алгебре и начала математического анализа 10 класс Алимов Задание 117

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Базовый и углубленный уровни

Задание 117

\[\boxed{\mathbf{117}\mathbf{.}}\]

\[= \left( \frac{2a^{\frac{1}{2}} + 2b^{\frac{1}{2}}}{a + a^{\frac{1}{2}}b^{\frac{1}{2}}} \right)^{5} \bullet \left( a^{\frac{21}{2}} \right)^{\frac{1}{3}} =\]

\[= \left( \frac{2 \bullet \left( a^{\frac{1}{2}} + b^{\frac{1}{2}} \right)}{a^{\frac{1}{2}} \bullet \left( a^{\frac{1}{2}} + b^{\frac{1}{2}} \right)} \right)^{5} \bullet a^{\frac{21}{2 \bullet 3}} =\]

\[= \left( \frac{2}{a^{\frac{1}{2}}} \right)^{5} \bullet a^{\frac{7}{2}} = \frac{2^{5}}{a^{\frac{5}{2}}} \bullet a^{\frac{7}{2}} =\]

\[= 32 \bullet a^{\frac{7}{2} - \frac{5}{2}} = 32a\]

\[= \left( \frac{a - a^{- 1}}{\left( a^{- \frac{1}{3}} + 1 \right)^{2} - a^{\frac{2}{3}}} + a^{- \frac{1}{3}} \right)^{- 3} =\]

\[= \left( \frac{a + 2a^{- \frac{2}{3}} + a^{- \frac{1}{3}} - a^{\frac{1}{3}}}{a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}} + 1 - a^{\frac{2}{3}}} \right)^{- 3} =\]

\[= \left( \frac{a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}} + 1 - a^{\frac{2}{3}}}{a + 2a^{- \frac{2}{3}} + a^{- \frac{1}{3}} - a^{\frac{1}{3}}} \right)^{3}\]

\[= \left( a + a^{\frac{1}{2}}b^{\frac{1}{2}} + b - \sqrt{\text{ab}} \right) \bullet \frac{1}{a + b} =\]

\[= \frac{a + \sqrt{\text{ab}} + b - \sqrt{\text{ab}}}{a + b} =\]

\[= \frac{a + b}{a + b} = 1\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам