\[\boxed{\mathbf{1024}\mathbf{.}}\]
\[\text{a\ }и\ b - абсцисса\ и\ ордината\ \]
\[точки\ касания:\]
\[y = x^{2} + 1;\ \ \ \ \ \ \ y = 0;\ \ \ \ \]
\[x = 0;\ \ \ \ \ x = 1.\]
\[Уравнение\ касательной:\]
\[y^{'}(a) = \left( x^{2} \right)^{'} + (1)^{'} = 2x + 0 =\]
\[= 2x = 2a\]
\[y(a) = a^{2} + 1\]
\[y = a^{2} + 1 + 2a \bullet (x - a) =\]
\[= a^{2} + 1 + 2ax - 2a^{2} =\]
\[= - a^{2} + 2ax + 1.\]
\[S(a) = \int_{0}^{1}{\left( - a^{2} + 2ax + 1 \right)\text{\ dx}} =\]
\[= \left. \ \left( - a^{2}x + 2a \bullet \frac{x^{2}}{2} + x \right) \right|_{0}^{1} =\]
\[= \left. \ \left( ax^{2} - a^{2}x + x \right) \right|_{0}^{1} =\]
\[= a - a^{2} + 1.\]
\[S^{'}(a) = (a + 1)^{'} - \left( a^{2} \right)^{'} =\]
\[= 1 - 2a.\]
\[Промежуток\ возрастания:\]
\[1 - 2a > 0\]
\[2a < 1\]
\[a < \frac{1}{2}.\]
\[a = \frac{1}{2} - точка\ максимума;\]
\[b = \left( \frac{1}{2} \right)^{2} + 1 = \frac{1}{4} + 1 = 1\frac{1}{4}.\]
\[Ответ:\ \ \left( \frac{1}{2};\ 1\frac{1}{4} \right).\]