\[\boxed{\mathbf{1018}\mathbf{.}}\]
\[1)\ y = 6x^{2}\text{\ \ }и\ \ y = (x - 3)(x - 4)\]
\[6x^{2} = (x - 3)(x - 4)\]
\[6x^{2} = x^{2} - 4x - 3x + 12\]
\[6x^{2} = x^{2} - 7x + 12\]
\[5x^{2} + 7x - 12 = 0\]
\[D = 7^{2} + 4 \bullet 5 \bullet 12 =\]
\[= 49 + 240 = 289\]
\[x_{1} = \frac{- 7 - 17}{2 \bullet 5} = - 2,4\ \ и\ \ \]
\[x_{2} = \frac{- 7 + 17}{2 \bullet 5} = 1.\]
\[\textbf{а)}\ 6x^{2} > 0\]
\[6x^{2} \neq 0\]
\[x \neq 0.\]
\[\textbf{б)}\ (x - 3)(x - 4) > 0\]
\[x < 3\ или\ x > 4.\]
\[= 35 - \frac{56}{2} - \frac{1}{3} = 35 - 28 - \frac{1}{3} =\]
\[= 7 - \frac{1}{3} = 6\frac{2}{3}.\]
\[Ответ:\ \ 6\frac{2}{3}.\]
\[2)\ y = 4 - x^{2}\text{\ \ }и\ \ y = (x - 2)^{2}\]
\[4 - x^{2} = (x - 2)^{2}\]
\[4 - x^{2} = x^{2} - 4x + 4\]
\[2x^{2} - 4x = 0\]
\[2x \bullet (x - 2) = 0\]
\[x_{1} = 0\ и\ x_{2} = 2.\]
\[\textbf{а)}\ 4 - x^{2} > 0\]
\[x^{2} < 4\]
\[- 2 < x < 2.\]
\[\textbf{б)}\ (x - 2)^{2} > 0\]
\[(x - 2)^{2} \neq 0\]
\[x \neq 2.\]
\[= - \left( - 8 + \frac{8}{3} \right) + \frac{0^{3}}{3} - \frac{( - 2)^{3}}{3} =\]
\[= 8 - \frac{8}{3} + \frac{8}{3} = 8.\]
\[Ответ:\ \ 8.\]