Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 960

Авторы:
Тип:учебник

Задание 960

\[\boxed{\mathbf{960.}}\]

\[1)\sin{3\pi} - \cos\frac{3\pi}{2} =\]

\[= \sin(\pi + 2\pi) - 0 = \sin\pi = 0\]

\[2)\cos 0 - \cos{3\pi} + \cos{3,5\pi} =\]

\[= 1 - \cos(\pi + 2\pi) +\]

\[+ \cos(1,5\pi + 2\pi) =\]

\[= 1 - \cos\pi + \cos{1,5\pi} = 1 -\]

\[- ( - 1) + \cos\frac{3\pi}{2} = 1 + 1 + 0 = 2\]

\[3)\sin\left( \text{πk} \right) + \cos(2\pi k) =\]

\[= 0 + 1 = 1\]

\[4)\cos\frac{(2k + 1)\pi}{2} -\]

\[- \sin\frac{(4k + 1)\pi}{2} =\]

\[= \cos\frac{2\pi k + \pi}{2} - \sin\frac{8\pi k + \pi}{2} =\]

\[= \cos\left( \frac{\pi}{2} + \pi k \right) -\]

\[- \sin\left( \frac{\pi}{2} + 4\pi k \right) = 0 -\]

\[- \sin\frac{\pi}{2} = - 1\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам