\[\boxed{\mathbf{917}.}\]
\[\log_{2}x \bullet \log_{2}(x - 3) +\]
\[+ 1 = \log_{2}\left( x^{2} - 3x \right)\]
\[\log_{2}x \bullet \log_{2}(x - 3) =\]
\[= \log_{2}\left( x \bullet (x - 3) \right) - 1\]
\[\log_{2}x \bullet \log_{2}(x - 3) = \log_{2}x +\]
\[+ \log_{2}(x - 3) - 1\]
\[\log_{2}x \bullet \left( \log_{2}(x - 3) - 1 \right) =\]
\[= \log_{2}(x - 3) - 1\]
\[\left( \log_{2}x - 1 \right)\left( \log_{2}(x - 3) - 1 \right) =\]
\[= 0\]
\[1)\ \log_{2}x - 1 = 0\]
\[\log_{2}x = 1\]
\[\log_{2}x = \log_{2}2\]
\[x = 2.\]
\[2)\ \log_{2}(x - 3) - 1 = 0\]
\[\log_{2}(x - 3) = 1\]
\[\log_{2}(x - 3) = \log_{2}2\]
\[x - 3 = 2\ \]
\[x = 5.\]
\[имеет\ смысл\ при:\]
\[1)\ x > 0;\ \]
\[x - 3 > 0 \Longrightarrow x > 3.\]
\[2)\ x^{2} - 3x > 0\]
\[x(x - 3) > 0\]
\[x < 0\ \ и\ \ x > 3.\]
\[Ответ:\ \ x = 5.\]