\[\boxed{\mathbf{915}.}\]
\[\log_{2}\left( 2^{x} - 5 \right) - \log_{2}\left( 2^{x} - 2 \right) =\]
\[= 2 - x\]
\[\log_{2}\frac{2^{x} - 5}{2^{x} - 2} = \log_{2}2^{2 - x}\]
\[\frac{2^{x} - 5}{2^{x} - 2} = 2^{2 - x}\]
\[2^{x} - 5 = 2^{2 - x} \bullet \left( 2^{x} - 2 \right)\]
\[2^{x} - 5 = 2^{2 - x + x} - 2^{2 - x + 1}\]
\[2^{x} - 5 = 2^{2} - 2^{3 - x}\]
\[2^{x} - 5 = 4 - \frac{2^{3}}{2^{x}}\]
\[2^{x} + \frac{8}{2^{x}} - 9 = 0\]
\[Пусть\ y = 2^{x}:\]
\[y + \frac{8}{y} - 9 = 0\ \ \ \ \ | \bullet y\]
\[y^{2} - 9y + 8 = 0\]
\[D = 9^{2} - 4 \bullet 8 = 81 - 32 = 49\]
\[y_{1} = \frac{9 - 7}{2} = 1;\ y_{2} = \frac{9 + 7}{2} = 8.\]
\[1)\ 2^{x} = 1\]
\[2^{x} = 2^{0}\ \]
\[x = 0.\]
\[2)\ 2^{x} = 8\]
\[2^{x} = 2^{3}\]
\[x = 3.\]
\[имеет\ смысл\ при:\]
\[1)\ 2^{x} - 5 > 0\]
\[2^{x} > 5\]
\[\log_{2}2^{x} > \log_{2}5\ \]
\[x > \log_{2}5.\]
\[2)\ 2^{x} - 2 > 0\]
\[2^{x} > 2\ \]
\[x > 1.\]
\[Ответ:\ \ x = 3.\]