\[\boxed{\mathbf{909}.}\]
\[1)\log_{3 - x}\frac{4 - x}{5 - x} \leq 1\]
\[Область\ определения:\]
\[\frac{4 - x}{5 - x} > 0\]
\[x < 4;\ \ x > 5.\]
\[Если\ 0 < 3 - x < 1;\]
\[то\ 2 < x < 3:\]
\[\left\{ \begin{matrix} 2 < x < 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{4 - x}{5 - x} - (3 - x) \geq 0 \\ \end{matrix} \right.\ \]
\[- \left( x - \frac{7 - \sqrt{5}}{2} \right)\left( x - \frac{7 + \sqrt{5}}{2} \right) \geq 0\]
\[\left( x - \frac{7 - \sqrt{5}}{2} \right)\left( x - \frac{7 + \sqrt{5}}{2} \right) \leq 0\]
\[\frac{7 - \sqrt{5}}{2} \leq x \leq \frac{7 + \sqrt{5}}{2}\]
\[\frac{7 - \sqrt{5}}{2} \leq x < 3.\]
\[Если\ 3 - x > 1;то\ x < 2:\]
\[\left\{ \begin{matrix} x < 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \frac{4 - x}{5 - x} - (3 - x) \leq 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[- \left( x - \frac{7 - \sqrt{5}}{2} \right)\left( x - \frac{7 + \sqrt{5}}{2} \right) \leq 0\]
\[\left( x - \frac{7 - \sqrt{5}}{2} \right)\left( x - \frac{7 + \sqrt{5}}{2} \right) \geq 0\]
\[x \leq \frac{7 - \sqrt{5}}{2};\ \ \ x \geq \frac{7 + \sqrt{5}}{2}.\]
\[x < 2.\]
\[Найдем\ корни\ уравнения:\]
\[\frac{4 - x}{5 - x} - (3 - x) = 0\]
\[4 - x - (3 - x)(5 - x) = 0\]
\[4 - x - 15 + 5x + 3x - x^{2} = 0\]
\[- x^{2} + 7x - 11 = 0\]
\[x^{2} - 7x + 11 = 0\]
\[D = 49 - 44 = 5\]
\[x_{1} = \frac{7 + \sqrt{5}}{2};\ \ \ x_{2} = \frac{7 - \sqrt{5}}{2}.\]
\[Ответ:\]
\[x \in ( - \infty;2) \cup \left\lbrack \frac{7 - \sqrt{5}}{2};3 \right).\]
\[2)\log_{2x}\left( x^{2} - 5x + 6 \right) < 1\]
\[\frac{\log\left( x^{2} - 5x + 6 \right)}{\log{2x}} = 1\]
\[\log\left( x^{2} - 5x + 6 \right) = \log{2x}\]
\[x^{2} - 5x + 6 = 2x\]
\[x^{2} - 7x + 6 = 0\]
\[(x - 6)(x - 1) < 0.\]
\[Область\ определения:\]
\[0 < x < \frac{1}{2};\]
\[x^{2} - 5x + 6 > 0\]
\[(x - 2)(x - 3) > 0.\]
\[Ответ:0 < x < \frac{1}{2};\ \ 1 < x < 2;\ \]
\[\ 3 < x < 6.\]