\[\boxed{\mathbf{907}.}\]
\[1)\ 3 + 2\log_{x + 1}3 = 2\log_{3}{(x + 1)}\]
\[3 + 2\log_{x + 1}3 -\]
\[- 2\log_{3}(x + 1) = 0\]
\[3 + 2 \cdot \frac{\log_{3}\ 3}{\log_{3}\ (x + 1)} -\]
\[- 2\log_{3}\ (x + 1) = 0\]
\[3 + \frac{2}{\log_{3}\ (x + 1)} -\]
\[- 2\log_{3}\ (x + 1) = 0\]
\[\log_{3}\ (x + 1) = t:\]
\[3 + \frac{2}{t} - 2t = 0\ \ \ \ \ \ \ \ | \cdot ( - t)\]
\[2t^{2} - 3t - 2 = 0\]
\[D = 9 + 16 = 25\]
\[t_{1} = \frac{3 + 5}{4} = 2;\ \ \ \ \]
\[t_{2} = \frac{3 - 5}{4} = - \frac{1}{2}.\]
\[Область\ определения:\]
\[x + 1 > 0\]
\[x > - 1.\]
\[\textbf{а)}\ \log_{3}\ (x + 1) = 2\]
\[\log_{3}\ (x + 1) = \log_{3}\ 3^{2}\]
\[x + 1 = 9\]
\[x = 8.\]
\[\textbf{б)}\ \log_{3}\ (x + 1) = - \frac{1}{2}\ \]
\[\log_{3}\ (x + 1) = 3^{- \frac{1}{2}}\]
\[x + 1 = \frac{1}{\sqrt{3}}\]
\[x = \frac{1}{\sqrt{3}} - 1\ \]
\[x = \frac{\sqrt{3} - 3}{3}.\]
\[Ответ:x = 8;\ \ \ x = \frac{\sqrt{3} - 3}{3}.\]
\[2)\ 1 + 2\log_{x + 2}5 = \log_{5}(x + 2)\]
\[1 + 2\log_{x + 2}5 - \log_{5}(x + 2) = 0\]
\[1 + 2 \cdot \frac{\log_{5}\ 5}{\log_{5}\ (x + 2)} -\]
\[- \log_{5}\ (x + 2) = 0\]
\[1 + \frac{2}{\log_{5}\ (x + 2)} -\]
\[- \log_{5}\ (x + 2) = 0\]
\[t = \log_{5}\ (x + 2):\]
\[1 + \frac{2}{t} - t = 0\ \ \ \ \ \ \ \ | \cdot ( - t)\]
\[t^{2} - t - 2 = 0\]
\[t_{1} = 2;\ \ \]
\[t_{2} = - 1\ (по\ теореме\ Виета).\]
\[Область\ определения:\]
\[x + 2 > 0\]
\[x > - 2.\]
\[\textbf{а)}\ \log_{5}\ (x + 2) = 2\]
\[\log_{5}\ (x + 2) = \log_{5}\ 5^{2}\]
\[x + 2 = 25\]
\[x = 23.\]
\[\textbf{б)}\ \log_{5}\ (x + 2) = - 1\]
\[\log_{5}\ (x + 2) = \log_{5}\ 5^{- 1}\]
\[x + 2 = \frac{1}{5}\]
\[x + 2 = 0,2\]
\[x = - 1,8.\]
\[Ответ:x = - 1,8;\ \ x = 23.\]
\[3)\log_{1 + x}{(3 + x)} = \log_{3 + x}{(1 + x)}\]
\[Область\ определения:\]
\[3 + x > 0 \rightarrow x > - 3;\]
\[1 + x > 0 \rightarrow x > - 1.\]
\[\log_{1 + x}(3 + x) = \frac{\log_{1 + x}\ (1 + x)}{\log_{1 + x}\ (3 + x)}\]
\[\log_{1 + x}(3 + x) = \frac{1}{\log_{1 + x}\ (3 + x)}\text{\ \ \ \ \ \ \ \ \ \ \ }\]
\[| \cdot \log_{1 + x}\ (3 + x)\]
\[\log_{1 + x}(3 + x)^{2} = 1\]
\[\sqrt{\log_{1 + x}\ (3 + x)^{2}} = \sqrt{1}\]
\[\textbf{а)}\ \log_{1 + x}\ (3 + x) = 1\ \ \ \ \ \ \]
\[\log_{1 + x}\ (3 + x) = \log_{1 + x}\ (1 + x)\]
\[3 + x = 1 + x\]
\[3 = 1\]
\[нет\ корней.\]
\[\textbf{б)}\ \ \log_{1 + x}\ (3 + x) = - 1.\]
\[\log_{1 + x}\ (3 + x) =\]
\[= \log_{1 + x}\ (1 + x)^{- 1}\]
\[3 + x = \frac{1}{1 + x}\ \ \ \ \ \ \ \ \ \ \ \ | \cdot (1 + x)\]
\[(3 + x)(1 + x) = 1\]
\[3 + x + 3x + x^{2} = 1\]
\[x^{2} + 4x + 2 = 0\]
\[D_{1} = 4 - 2 = 2\]
\[x_{1} = \ - 2 - \sqrt{2}\ (не\ подходит);\ \ \ \]
\[x_{2} = - 2 + \sqrt{2}\ \]
\[Ответ:x = - 2 + \sqrt{2}.\]
\[4)\log_{3x + 7}(5x + 3) =\]
\[= 2 - \log_{5x + 3}(3x + 7)\]
\[\log_{3x + 7}(5x + 3) =\]
\[= 2 - \frac{\log_{3x + 7}(3x + 7)}{\log_{3x + 7}(5x + 3)}\]
\[\log_{3x + 7}(5x + 3) =\]
\[= 2 - \frac{1}{\log_{3x + 7}(5x + 3)}\]
\[Пусть\ y = \log_{3x + 7}(5x + 3):\]
\[y = 2 - \frac{1}{y}\ \ \ \ \ | \bullet y\]
\[y^{2} = 2y - 1\]
\[y^{2} - 2y + 1 = 0\]
\[(y - 1)^{2} = 0\]
\[y - 1 = 0\ \]
\[y = 1.\]
\[\log_{3x + 7}(5x + 3) = 1\]
\[\log_{3x + 7}(5x + 3) =\]
\[= \log_{3x + 7}(3x + 7)\]
\[5x + 3 = 3x + 7\]
\[2x = 4\ \]
\[x = 2.\]
\[имеет\ смысл\ при:\]
\[5x + 3 > 0 \Longrightarrow x > - 0,6;\]
\[3x + 7 > 0 \Longrightarrow x > - \frac{7}{3};\]
\[3x + 7 \neq 1 \Longrightarrow x \neq - 2.\]
\[Ответ:\ \ x = 2.\]