\[\boxed{\mathbf{894}.}\]
\[1)\log_{\sqrt{3}}\frac{1}{3\sqrt[3]{3}} = \log_{3^{\frac{1}{2}}}\frac{1}{3^{1} \bullet 3^{\frac{1}{3}}} =\]
\[= 2\log_{3}\frac{1}{3^{\frac{4}{3}}} = 2\log_{3}3^{- \frac{4}{3}} =\]
\[= 2 \bullet \left( - \frac{4}{3} \right) = - \frac{8}{3}\]
\[2)\log_{\sqrt{5}}\frac{1}{25\sqrt[4]{5}} = \log_{5^{\frac{1}{2}}}\frac{1}{5^{2} \bullet 5^{\frac{1}{4}}} =\]
\[= 2\log_{5}\frac{1}{5^{\frac{9}{4}}} = 2\log_{5}5^{- \frac{9}{4}} =\]
\[= 2 \bullet \left( - \frac{9}{4} \right) = - \frac{9}{2}\]
\[3)\ 2^{2 - \log_{2}5} = \frac{2^{2}}{2^{\log_{2}5}} = \frac{4}{5} = 0,8\]
\[4)\ {3,6}^{\log_{3,6}10 + 1} =\]
\[= {3,6}^{\log_{3,6}10} \bullet 3,6 = 10 \bullet 3,6 = 36\]
\[5)\ 2\log_{5}\sqrt{5} + 3\log_{2}8 =\]
\[= \log_{5}\left( \sqrt{5} \right)^{2} + \log_{2}8^{3} =\]
\[= \log_{5}5 + \log_{2}512 =\]
\[= 1 + \log_{2}2^{9} = 1 + 9 = 10\]
\[6)\log_{2}{\log_{2}{\log_{2}2^{16}}} =\]
\[= \log_{2}{\log_{2}16} = \log_{2}{\log_{2}2^{4}} =\]
\[= \log_{2}4 = \log_{2}2^{2} = 2\]