\[\boxed{\mathbf{891}.}\]
\[1)\log_{2}(x - 5) \leq 2\]
\[\log_{2}(x - 5) \leq \log_{2}2^{2}\]
\[x - 5 \leq 2^{2}\]
\[x - 5 \leq 4\ \]
\[x \leq 9.\]
\[имеет\ смысл\ при:\]
\[x - 5 > 0\]
\[x > 5.\]
\[Ответ:\ \ 5 < x \leq 9.\]
\[2)\log_{3}(7 - x) > 1\]
\[\log_{3}(7 - x) > \log_{3}3\]
\[7 - x > 3\]
\[- x > - 4\]
\[x < 4.\]
\[имеет\ смысл\ при:\]
\[7 - x > 0\ \]
\[x < 7.\]
\[Ответ:\ \ x < 4.\]
\[3)\log_{\frac{1}{2}}(2x + 1) > - 2\]
\[\log_{\frac{1}{2}}(2x + 1) > \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{- 2}\]
\[2x + 1 < \left( \frac{1}{2} \right)^{- 2}\]
\[2x + 1 < 2^{2}\]
\[2x + 1 < 4\]
\[2x < 3\ \]
\[x < 1,5.\]
\[имеет\ смысл\ при:\]
\[2x + 1 > 0\]
\[2x > - 1\]
\[x > - 0,5.\]
\[Ответ:\ \ - 0,5 < x < 1,5.\]
\[4)\log_{\frac{1}{2}}(3 - 5x) < - 3\]
\[\log_{\frac{1}{2}}(3 - 5x) < \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{- 3}\]
\[3 - 5x > \left( \frac{1}{2} \right)^{- 3}\]
\[3 - 5x > 2^{3}\]
\[3 - 5x > 8\]
\[- 5x > 5\]
\[x < - 1.\]
\[имеет\ смысл\ при:\]
\[3 - 5x > 0\]
\[5x < 3\ \]
\[x < 0,6.\]
\[Ответ:\ \ x < - 1.\]