\[\boxed{\mathbf{889}.}\]
\[1)\lg\left( x^{2} - 2x \right) = \lg 30 - 1\]
\[\lg\left( x^{2} - 2x \right) = \lg 30 - \lg 10\]
\[\lg\left( x^{2} - 2x \right) = \lg\frac{30}{10}\]
\[\lg\left( x^{2} - 2x \right) = \lg 3\]
\[x^{2} - 2x = 3\]
\[x^{2} - 2x - 3 = 0\]
\[D = 2^{2} + 4 \bullet 3 = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2} = - 1;\ \]
\[\ x_{2} = \frac{2 + 4}{2} = 3.\]
\[имеет\ смысл\ при:\]
\[x^{2} - 2x > 0\]
\[x(x - 2) > 0\]
\[x < 0;\text{\ \ }x > 2\]
\[Ответ:\ \ x_{1} = - 1;\ \ x_{2} = 3.\]
\[2)\log_{3}\left( 2x^{2} + x \right) =\]
\[= \log_{3}6 - \log_{3}2\]
\[\log_{3}\left( 2x^{2} + x \right) = \log_{3}\frac{6}{2}\]
\[\log_{3}\left( 2x^{2} + x \right) = \log_{3}3\]
\[2x^{2} + x = 3\]
\[2x^{2} + x - 3 = 0\]
\[D = 1^{2} + 4 \bullet 2 \bullet 3 = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2 \bullet 2} = - \frac{6}{4} = - 1,5;\]
\[x_{2} = \frac{- 1 + 5}{2 \bullet 2} = \frac{4}{4} = 1.\]
\[имеет\ смысл\ при:\]
\[2x^{2} + x > 0\]
\[(2x + 1)x > 0\]
\[x < - 0,5;\text{\ \ }x > 0.\]
\[Ответ:\ \ x_{1} = - 1,5;\ \ x_{2} = 1.\]
\[3)\lg^{2}x - 3\lg x = 4\]
\[\lg^{2}x - 3\lg x - 4 = 0\]
\[Пусть\ y = \lg x:\]
\[y^{2} - 3y - 4 = 0\]
\[D = 3^{2} + 4 \bullet 4 = 9 + 16 = 25\]
\[y_{1} = \frac{3 - 5}{2} = - 1;\ \]
\[\ y_{2} = \frac{3 + 5}{2} = 4.\]
\[1)\ \lg x = - 1\]
\[\lg x = \lg 10^{- 1}\]
\[x = 10^{- 1}\]
\[x = 0,1.\]
\[2)\ \lg x = 4\]
\[\lg x = \lg 10^{4}\]
\[x = 10^{4} = 10\ 000.\]
\[Ответ:\ \ x_{1} = 0,1;\ \ x_{2} = 10\ 000.\]
\[4)\log_{2}^{2}x - 5\log_{2}x + 6 = 0\]
\[Пусть\ y = \log_{2}x:\]
\[y^{2} - 5y + 6 = 0\]
\[D = 5^{2} - 4 \bullet 6 = 25 - 24 = 1\]
\[y_{1} = \frac{5 - 1}{2} = 2;\text{\ \ }y_{2} = \frac{5 + 1}{2} = 3.\]
\[1)\ \log_{2}x = 2\]
\[\log_{2}x = \log_{2}2^{2}\]
\[x = 2^{2}\]
\[x = 4.\]
\[2)\ \log_{2}x = 3\]
\[\log_{2}x = \log_{2}2^{3}\]
\[x = 2^{3}\]
\[x = 8\]
\[Ответ:\ \ x_{1} = 4;\ \ x_{2} = 8.\]