\[\boxed{\mathbf{882}.}\]
\[1)\ 4\log_{\frac{1}{2}}3 - \frac{2}{3}\log_{\frac{1}{2}}27 -\]
\[- 2\log_{\frac{1}{2}}6 = \log_{\frac{1}{2}}3^{4} -\]
\[- \log_{\frac{1}{2}}27^{\frac{2}{3}} - \log_{\frac{1}{2}}6^{2} =\]
\[= \log_{\frac{1}{2}}81 - \log_{\frac{1}{2}}3^{2} - \log_{\frac{1}{2}}36 =\]
\[= \log_{\frac{1}{2}}81 - \log_{\frac{1}{2}}9 - \log_{\frac{1}{2}}36 =\]
\[= \log_{\frac{1}{2}}\frac{81}{9 \bullet 36} = \log_{\frac{1}{2}}\frac{1}{4} =\]
\[= \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{2} = 2\]
\[2)\ \frac{2}{3}\lg{0,001} + \lg\sqrt[3]{1000} -\]
\[- \frac{3}{5}\lg\sqrt{10\ 000} = \frac{2}{3}\lg 10^{- 3} +\]
\[+ \lg\sqrt[3]{10^{3}} - \frac{3}{5}\lg\sqrt{10^{4}} =\]
\[= \frac{2}{3} \bullet ( - 3) + \lg 10 - \frac{3}{5}\lg 10^{2} =\]
\[= - 2 + 1 - \frac{3}{5} \bullet 2 = - 1 - \frac{6}{5} =\]
\[= - 1 - 1,2 = - 2,2\]