\[\boxed{\mathbf{875}.}\]
\[1)\ \frac{1}{5 - \lg x} + \frac{2}{1 + \lg x} < 1\]
\[Пусть\ y = \lg x:\]
\[\frac{1}{5 - y} + \frac{2}{1 + y} < 1\]
\[\frac{y^{2} - 5y + 6}{(5 - y)(1 + y)} < 0\]
\[D = 5^{2} - 4 \bullet 6 = 25 - 24 = 1\]
\[y_{1} = \frac{5 - 1}{2} = 2;\text{\ \ }y_{2} = \frac{5 + 1}{2} = 3.\]
\[\frac{(y - 2)(y - 3)}{(5 - y)(1 + y)} < 0\]
\[(y + 1)(y - 2)(y - 3)(5 - y) < 0\]
\[(y + 1)(y - 2)(y - 3)(y - 5) > 0\]
\[y < - 1;\ \ 2 < y < 3;\ \ y > 5.\]
\[1)\ \lg x < - 1\]
\[\lg x < \lg 10^{- 1}\]
\[x < 10^{- 1}\]
\[\ x < 0,1.\]
\[2)\ \lg x > 2\]
\[\lg x > \lg 10^{2}\]
\[x > 10^{2}\]
\[x > 100.\]
\[3)\ \lg x < 3\]
\[\lg x < \lg 10^{3}\]
\[x < 10^{3}\]
\[x < 1000.\]
\[4)\ \lg x > 5\]
\[\lg x > \lg 10^{5}\]
\[x > 10^{5}\]
\[x > 100\ 000.\]
\[\ имеет\ смысл\ при:\ \]
\[x > 0.\]
\[Ответ:\ \ 0 < x < 0,1;\ \ \]
\[100 < x < 1000;\ \ x > 100\ 000.\]
\[2)\log_{3}\left( 2 - 3^{- x} \right) < x +\]
\[+ 1 - \log_{3}4\]
\[\log_{3}\left( 2 - 3^{- x} \right) < \log_{3}3^{x} +\]
\[+ \log_{3}3 - \log_{3}4\]
\[\log_{3}\left( 2 - 3^{- x} \right) < \log_{3}\frac{3^{x} \bullet 3}{4}\]
\[2 - 3^{- x} < \frac{3 \bullet 3^{x}}{4}\]
\[4\left( 2 - 3^{- x} \right) < 3 \bullet 3^{x}\]
\[8 - 4 \bullet 3^{- x} < 3 \bullet 3^{x}\]
\[3 \bullet 3^{x} - 8 + 4 \bullet 3^{- x} > 0\ \ \ \ \ | \bullet 3^{x}\]
\[3 \bullet 3^{2x} - 8 \bullet 3^{x} + 4 > 0\]
\[Пусть\ y = 3^{x}:\]
\[3y^{2} - 8y + 4 > 0\]
\[D = 8^{2} - 4 \bullet 3 \bullet 4 =\]
\[= 64 - 48 = 16\]
\[y_{1} = \frac{8 - 4}{2 \bullet 3} = \frac{4}{6} = \frac{2}{3};\]
\[y_{2} = \frac{8 + 4}{2 \bullet 3} = \frac{12}{6} = 2.\]
\[\left( y - \frac{2}{3} \right)(y - 2) > 0\]
\[y < \frac{2}{3};\ \ y > 2.\]
\[1)\ 3^{x} < \frac{2}{3}\]
\[\log_{3}3^{x} < \log_{3}\frac{2}{3}\ \]
\[x < \log_{3}\frac{2}{3}.\]
\[2)\ 3^{x} > 2\]
\[\log_{3}3^{x} > \log_{3}2\]
\[x > \log_{3}2.\]
\[имеет\ смысл\ при:\]
\[2 - 3^{- x} > 0\]
\[3^{- x} < 2\]
\[\log_{3}3^{- x} < \log_{3}2\]
\[- x < \log_{3}2\]
\[x > - \log_{3}2\]
\[x > \log_{3}2^{- 1}\]
\[x > \log_{3}{\frac{1}{2}.}\]
\[Ответ:\ \ \log_{3}\frac{1}{2} < x < \log_{3}\frac{2}{3};\]
\[\ \ x > \log_{3}2\text{.\ }\]
\[3)\log_{\frac{x - 1}{5x - 6}}\left( \sqrt{6} - 2x \right) < 0\]
\[\log_{\frac{x - 1}{5x - 6}}\left( \sqrt{6} - 2x \right) < \log_{\frac{x - 1}{5x - 6}}1\]
\[Основание\ логарифма:\]
\[\frac{x - 1}{5x - 6} > 1\]
\[\frac{x - 1}{5x - 6} - 1 > 0\]
\[\frac{x - 1 - 5x + 6}{5x - 6} > 0\]
\[\frac{5 - 4x}{5x - 6} > 0\]
\[\frac{4x - 5}{5x - 6} < 0\]
\[(5x - 6)(4x - 5) < 0\]
\[1,2 < x < 1,25.\]
\[1,2 < x < 1,25:\]
\[\sqrt{6} - 2x < 1\]
\[- 2x < 1 - \sqrt{6}\]
\[x > \frac{\sqrt{6} - 1}{2}.\]
\[x < 1,2\ или\ x > 1,25:\]
\[\sqrt{6} - 2x > 1\]
\[x < \frac{\sqrt{6} - 1}{2}.\]
\[имеет\ смысл\ при:\]
\[1)\ \frac{x - 1}{5x - 6} > 0\]
\[(x - 1)(5x - 6) > 0\]
\[x < 1;\text{\ \ }x > 1,2.\]
\[2)\ \sqrt{6} - 2x > 0\]
\[2x < \sqrt{6}\]
\[x < \frac{\sqrt{6}}{2}\]
\[Ответ:\ \ x < \frac{\sqrt{6} - 1}{2};\ \ \]
\[1,2 < x < \frac{\sqrt{6}}{2}.\]