\[\boxed{\mathbf{869}.}\]
\[1)\log_{5}\frac{3x - 2}{x^{2} + 1} > 0\]
\[\log_{5}\frac{3x - 2}{x^{2} + 1} > \log_{5}1\]
\[\frac{3x - 2}{x^{2} + 1} > 1\]
\[3x - 2 > x^{2} + 1\]
\[x^{2} - 3x + 3 < 0\]
\[D = 3^{2} - 4 \bullet 3 =\]
\[= 9 - 12 = - 3 < 0\]
\[a = 1 > 0 \Longrightarrow \ корней\ нет.\]
\[Ответ:\ \ нет\ решений.\]
\[2)\log_{\frac{1}{2}}\frac{2x^{2} + 3}{x - 7} < 0\]
\[\log_{\frac{1}{2}}\frac{2x^{2} + 3}{x - 7} < \log_{\frac{1}{2}}1\]
\[\frac{2x^{2} + 3}{x - 7} > 1\]
\[2x^{2} + 3 > x - 7\]
\[2x^{2} - x + 10 > 0\]
\[D = 1^{2} - 4 \bullet 2 \bullet 10 =\]
\[= 1 - 80 = - 79 < 0\]
\[a = 2 > 0 \Longrightarrow \ x - любое\ число.\]
\[\ имеет\ смысл\ при:\]
\[\frac{2x^{2} + 3}{x - 7} > 0\]
\[x - 7 > 0\]
\[\ x > 7\]
\[Ответ:\ \ x > 7.\]
\[3)\lg(3x - 4) < \lg(2x + 1)\]
\[3x - 4 < 2x + 1\]
\[x < 5\]
\[имеет\ смысл\ при:\]
\[3x - 4 > 0 \Longrightarrow \ x > 1\frac{1}{3};\]
\[2x + 1 > 0 \Longrightarrow x > - \frac{1}{2}.\]
\[Ответ:\ \ 1\frac{1}{3} < x < 5.\]
\[4)\log_{\frac{1}{2}}(2x + 3) > \log_{\frac{1}{2}}(x + 1)\]
\[2x + 3 < x + 1\]
\[x < - 2.\]
\[\ имеет\ смысл\ при:\]
\[2x + 3 > 0 \Longrightarrow \ x > - \frac{3}{2}.\]
\[x + 1 > 0 \Longrightarrow x > - 1.\]
\[Ответ:\ \ нет\ решений.\]