\[\boxed{\mathbf{800}\mathbf{.}}\]
\[\lg 2 \approx 0,301;\]
\[\ \lg 5 \approx 0,699;\ \lg 3 \approx 0,477.\]
\[1)\log_{5}2 = \frac{\lg 2}{\lg 5} = \frac{0,301}{0,699} \approx 0,43.\]
\[2)\log_{2}5 = \frac{\lg 5}{\lg 2} = \frac{0,699}{0,301} \approx 2,32.\]
\[3)\log_{3}2 = \frac{\lg 2}{\lg 3} = \frac{0,301}{0,477} \approx 0,63.\]
\[4)\log_{2}3 = \frac{\lg 3}{\lg 2} = \frac{0,477}{0,301} \approx 1,58.\]
\[5)\log_{2}\sqrt{5} = \log_{2}5^{\frac{1}{2}} =\]
\[= \frac{1}{2}\log_{2}5 = \frac{1}{2} \cdot \frac{\lg 5}{\lg 2} =\]
\[= \frac{1}{2} \cdot \frac{0,699}{0,301} \approx 1,16.\]
\[6)\log_{5}{0,25} = \log_{5}2^{- 2} =\]
\[= - 2\log_{5}2 = - 2 \cdot \frac{\lg 2}{\lg 5} =\]
\[= - 2 \cdot 0,43 \approx - 0,86.\]
\[7)\log_{3}{0,5} = \log_{3}2^{- 1} =\]
\[= - 1\log_{3}2 = - \frac{\lg 2}{\lg 3} = - 0,63.\]
\[8)\log_{3}{0,2} = \log_{3}5^{- 1} =\]
\[= - \log_{3}5 = - \frac{\lg 5}{\lg 3} =\]
\[= - \frac{0,699}{0,477} \approx - 1,46.\]