\[\boxed{\mathbf{780}\mathbf{.}}\]
\[1)\log_{8}12 - \log_{8}15 + \log_{8}20 =\]
\[= \log_{8}\frac{12 \bullet 20}{15} = \log_{8}16 =\]
\[= \log_{8}(8 \bullet 2) =\]
\[= \log_{8}8 + \log_{8}2 =\]
\[= 1 + \log_{8}\left( 2^{3} \right)^{\frac{1}{3}} = 1 + \log_{8}8^{\frac{1}{3}} =\]
\[= 1 + \frac{1}{3} = 1\frac{1}{3}\]
\[2)\log_{9}15 + \log_{9}18 - \log_{9}10 =\]
\[= \log_{9}\frac{15 \bullet 18}{10} = \log_{9}27 =\]
\[= \log_{9}(9 \bullet 3) =\]
\[= \log_{9}9 + \log_{9}3 =\]
\[= 1 + \log_{9}\left( 3^{2} \right)^{\frac{1}{2}} = 1 + \log_{9}9^{\frac{1}{2}} =\]
\[= 1 + \frac{1}{2} = 1\frac{1}{2}\]
\[3)\ \frac{1}{2}\log_{7}36 - \log_{7}14 -\]
\[- 3\log_{7}\sqrt[3]{21} = \log_{7}36^{\frac{1}{2}} -\]
\[- \log_{7}14 - \log_{7}\left( 21^{\frac{1}{3}} \right)^{3} =\]
\[= \log_{7}6 - \log_{7}14 - \log_{7}21 =\]
\[= \log_{7}\frac{6}{14 \bullet 21} = \log_{7}\frac{1}{49} =\]
\[= \log_{7}7^{- 2} = - 2\]
\[4)\ 2\log_{\frac{1}{3}}6 - \frac{1}{2}\log_{\frac{1}{3}}400 +\]
\[+ 3\log_{\frac{1}{3}}\sqrt[3]{45} = \log_{\frac{1}{3}}6^{2} -\]
\[- \log_{\frac{1}{3}}400^{\frac{1}{2}} + \log_{\frac{1}{3}}\left( \sqrt[3]{45} \right)^{3} =\]
\[= \log_{\frac{1}{3}}36 - \log_{\frac{1}{3}}20 + \log_{\frac{1}{3}}45 =\]
\[= \log_{\frac{1}{3}}\frac{36 \bullet 45}{20} = \log_{\frac{1}{3}}81 =\]
\[= \log_{\frac{1}{3}}3^{4} =\]
\[= \log_{\frac{1}{3}}\left( \frac{1}{3} \right)^{- 4} = - 4\]