\[\boxed{\mathbf{772}\mathbf{.}}\]
\[1)\log_{x}27 = 3\]
\[\log_{x}27 = \log_{x}x^{3}\]
\[27 = x^{3}\]
\[x = \sqrt[3]{27} = 3\]
\[Ответ:\ \ x = 3.\]
\[2)\log_{x}\frac{1}{7} = - 1\]
\[\log_{x}\frac{1}{7} = \log_{x}x^{- 1}\]
\[\frac{1}{7} = x^{- 1}\]
\[\frac{1}{7} = \frac{1}{x}\ \]
\[x = 7\]
\[Ответ:\ \ x = 7.\]
\[3)\log_{x}\sqrt{5} = - 4\]
\[\log_{x}\sqrt{5} = \log_{x}x^{- 4}\]
\[\sqrt{5} = x^{- 4}\]
\[\sqrt{5} = \frac{1}{x^{4}}\]
\[x^{4} = \frac{1}{\sqrt{5}}\]
\[x = \sqrt[4]{\frac{1}{\sqrt{5}}} = \sqrt[4]{5^{- \frac{1}{2}}} =\]
\[= 5^{- \frac{1}{2}\ \ :\ 4} = 5^{- \frac{1}{8}}\]
\[Ответ:\ \ x = 5^{- \frac{1}{8}}.\]
\[4)\log_{x}{0,2} = - 3\]
\[x^{- 3} = \left( \left( \frac{1}{5} \right)^{- \frac{1}{3}} \right)^{- 3}\]
\[x = \left( \frac{1}{5} \right)^{- \frac{1}{3}}\]
\[x = 5^{\frac{1}{3}}.\]
\[Ответ:\ \ x = 5^{\frac{1}{3}}.\]