\[\boxed{\mathbf{770}\mathbf{.}}\]
\[1)\log_{3}\left( 1 - x^{3} \right)\]
\[1 - x^{3} > 0\]
\[- x^{3} > - 1\]
\[x^{3} < 1\]
\[x < 1\]
\[Ответ:\ \ x < 1.\]
\[2)\log_{2}\left( x^{3} + 8 \right)\]
\[x^{3} + 8 > 0\]
\[x^{3} > - 8\ \]
\[x > - 2\]
\[Ответ:\ \ x > - 2.\]
\[3)\log_{\frac{1}{4}}\left( x^{3} + x^{2} - 6x \right)\]
\[x^{3} + x^{2} - 6x > 0\]
\[x\left( x^{2} + x - 6 \right) > 0\]
\[D = 1^{2} + 4 \bullet 6 = 1 + 24 = 25\]
\[x_{1} = \frac{- 1 - 5}{2} = - 3;\ \]
\[\ x_{2} = \frac{- 1 + 5}{2} = 2.\]
\[(x + 3) \bullet x \bullet (x - 2) > 0\]
\[- 3 < x < 0;\text{\ \ }x > 2\]
\(Ответ:\ \ - 3 < x < 0;\ \ x > 2.\)
\[4)\log_{\frac{1}{3}}\left( x^{3} + x^{2} - 2x \right)\]
\[x^{3} + x^{2} - 2x > 0\]
\[x\left( x^{2} + x - 2 \right) > 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2;\ \]
\[\ x_{2} = \frac{- 1 + 3}{2} = 1.\]
\[(x + 2) \bullet x \bullet (x - 1) > 0\]
\[- 2 < x < 0\ \ и\ \ x > 1\]
\[Ответ:\ \ - 2 < x < 0;\ \ x > 1.\]