\[\boxed{\mathbf{765}\mathbf{.}}\]
\[\log_{a}\text{b\ }(a > 0\ и\ a \neq 1)\ \ определен\ при\ b > 0.\]
\[1)\log_{\frac{1}{2}}(4 - x)\]
\[4 - x > 0\]
\[- x > - 4\ \]
\[x < 4\]
\[Ответ:\ \ x < 4\ \]
\[2)\log_{0,2}(7 - x)\]
\[7 - x > 0\]
\[- x > - 7\ \]
\[x < 7\]
\[Ответ:\ \ x < 7.\]
\[3)\log_{6}\frac{1}{1 - 2x}\]
\[\frac{1}{1 - 2x} > 0\]
\[1 - 2x > 0\]
\[- 2x > - 1\ \]
\[x < 0,5\]
\[Ответ:\ \ x < 0,5.\]
\[4)\log_{8}\frac{5}{2x - 1}\]
\[\frac{5}{2x - 1} > 0\]
\[2x - 1 > 0\]
\[2x > 1\ \]
\[x > 0,5\]
\[Ответ:x > 0,5.\]
\[5)\log_{\frac{1}{4}}\left( - x^{2} \right)\]
\[- x^{2} > 0\]
\[x^{2} < 0\]
\[корней\ нет\]
\[Ответ:\ \ x \in \varnothing.\]
\[6)\log_{0,7}\left( - 2x^{3} \right)\]
\[- 2x^{3} > 0\]
\[2x^{3} < 0\]
\[x^{3} < 0\]
\[x < 0.\]
\[Ответ:\ \ x < 0.\]