Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 723

Авторы:
Тип:учебник

Задание 723

\[\boxed{\mathbf{723}.}\]

\[1)\ \left\{ \begin{matrix} 2^{x + 1} > 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ {0,6}^{x^{2} - 2} = \left( 1\frac{3}{2} \right)^{x} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} 2^{x + 1} > 2^{0}\text{\ \ \ \ \ \ \ \ \ \ \ } \\ \left( \frac{3}{5} \right)^{x^{2} - 2} = \left( \frac{5}{3} \right)^{x} \\ \end{matrix} \right.\ \]

\[Функция\ возрастающая:\]

\[\left\{ \begin{matrix} x + 1 > 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \left( \frac{3}{5} \right)^{x^{2} - 2} = \left( \frac{3}{5} \right)^{- x} \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\ \left\{ \begin{matrix} x > - 1\ \ \ \ \ \ \ \ \ \ \\ x^{2} - 2 = - x \\ \end{matrix} \right.\ \]

\[x^{2} + x - 2 = 0\]

\[x_{1} + x_{2} = - 1;\ \ x_{1} \cdot x_{2} = 2.\]

\[x_{1} = - 2\ \ (не\ подходит);\ \ \]

\[x_{2} = 1.\]

\[Ответ:x = 1.\]

\[2)\ \left\{ \begin{matrix} 10^{5x} = {0,1}^{2x^{2} - 3} \\ 3^{4x - 1} \leq 1\ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]

\[\text{\ \ }\left\{ \begin{matrix} \left( \frac{1}{10} \right)^{- 5x} = \left( \frac{1}{10} \right)^{2x^{2} - 3} \\ 3^{4x - 1} \leq 3^{0}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]

\[Функция\ возрастающая:\]

\[\left\{ \begin{matrix} 4x - 1 \leq 0\ \ \ \ \ \ \ \ \\ - 5x = 2x^{2} - 3 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]

\[\left\{ \begin{matrix} x \leq 0,25\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2x^{2} + 5x - 3 = 0 \\ \end{matrix} \right.\ \]

\[2x^{2} + 5x - 3 = 0\]

\[D = 25 + 24 = 49\]

\[x_{1} = \frac{- 5 + 7}{4} =\]

\[= \frac{1}{2}\ (не\ подходит);\]

\[x_{2} = \frac{- 5 - 7}{4} = - 3.\]

\[Ответ:x = - 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам