\[\boxed{\mathbf{721}.}\]
\[1)\ \left\{ \begin{matrix} 5^{x + 1} \bullet 3^{y} = 75 \\ 3^{x} \bullet 5^{y - 1} = 3\ \ \\ \end{matrix} \right.\ \ (\text{x)}\]
\[5^{x + 1} \bullet 5^{y - 1} \bullet 3^{y} \bullet 3^{x} = 75 \bullet 3\]
\[5^{x + 1 + y - 1} \bullet 3^{y + x} = 225\]
\[5^{x + y} \bullet 3^{y + x} = 225\]
\[(5 \bullet 3)^{x + y} = 225\]
\[15^{x + y} = 15^{2}\]
\[x + y = 2\]
\[y = 2 - x.\]
\[2)\ 3^{x} \bullet 5^{2 - x - 1} = 3\]
\[3^{x} \bullet 5^{1 - x} = 3\]
\[3^{x} \bullet \frac{5}{5^{x}} = 3\]
\[\frac{3^{x}}{5^{x}} = \frac{3}{5}\]
\[\left( \frac{3}{5} \right)^{x} = \left( \frac{3}{5} \right)^{1}\]
\[x = 1\ \]
\[y = 2 - 1 = 1.\]
\[Ответ:\ \ (1;1).\]
\[2)\ \left\{ \begin{matrix} 3^{x} \bullet 2^{y} = 4 \\ 3^{y} \bullet 2^{x} = 9 \\ \end{matrix} \right.\ \ (\text{x)}\]
\[3^{x} \bullet 3^{y} \bullet 2^{y} \bullet 2^{x} = 4 \bullet 9\]
\[3^{x + y} \bullet 2^{y + x} = 36\]
\[(3 \bullet 2)^{x + y} = 36\]
\[6^{x + y} = 6^{2}\]
\[x + y = 2\]
\[y = 2 - x.\]
\[1)\ 3^{x} \bullet 2^{2 - x} = 4\]
\[3^{x} \bullet \frac{2^{2}}{2^{x}} = 4\]
\[\frac{3^{x}}{2^{x}} \bullet 4 = 4\]
\[\left( \frac{3}{2} \right)^{x} = 1\]
\[\left( \frac{3}{2} \right)^{x} = \left( \frac{3}{2} \right)^{0}\ \]
\[x = 0;\ \]
\[y = 2 - 0 = 2.\]
\[Ответ:\ \ (0;2).\]