\[\boxed{\mathbf{650}.}\]
\[1)\ \sqrt{x + 4} - 3\sqrt[4]{x + 4} + 2 = 0;\]
\[Пусть\ y = \sqrt[4]{x + 4}:\]
\[y^{2} - 3y + 2 = 0;\]
\[D = 3^{2} - 4 \bullet 2 = 9 - 8 = 1\]
\[y_{1} = \frac{3 - 1}{2} = 1\ \ и\ \ \]
\[y_{2} = \frac{3 + 1}{2} = 2;\]
\[Первое\ значение:\]
\[\sqrt[4]{x + 4} = 1;\]
\[x + 4 = 1;\]
\[x = - 3;\]
\[Второе\ значение:\]
\[\sqrt[4]{x + 4} = 2;\]
\[x + 4 = 16;\]
\[x = 12;\]
\[Ответ:\ \ x_{1} = - 3;\ \ x_{2} = 12.\]
\[2)\ \sqrt{x - 3} = 3\sqrt[4]{x - 3} + 4;\]
\[Пусть\ y = \sqrt[4]{x - 3}:\]
\[y^{2} = 3y + 4;\]
\[y^{2} - 3y - 4 = 0;\]
\[D = 3^{2} + 4 \bullet 4 = 9 + 16 = 25\]
\[y_{1} = \frac{3 - 5}{2} = - 1\ \ и\]
\[\text{\ \ }y_{2} = \frac{3 + 5}{2} = 4;\]
\[Первое\ значение:\]
\[\sqrt[4]{x - 3} = - 1 - нет\ корней:\]
\[Второе\ значение:\]
\[\sqrt[4]{x - 3} = 4;\]
\[x - 3 = 256;\]
\[x = 259;\]
\[Ответ:\ \ x = 259.\]
\[3)\ \sqrt[6]{1 - x} - 5\sqrt[3]{1 - x} = - 6;\]
\[Пусть\ y = \sqrt[6]{1 - x}:\]
\[y - 5y^{2} = - 6;\]
\[5y^{2} - y - 6 = 0;\]
\[D = 1^{2} + 4 \bullet 5 \bullet 6 =\]
\[= 1 + 120 = 121\]
\[y_{1} = \frac{1 - 11}{2 \bullet 5} = - 1\ \ и\ \ \]
\[y_{2} = \frac{1 + 11}{2 \bullet 5} = \frac{12}{10} = \frac{6}{5};\]
\[Первое\ значение:\]
\[\sqrt[6]{1 - x} = - 1 - нет\ корней:\]
\[Второе\ значение:\]
\[\sqrt[6]{1 - x} = \frac{6}{5};\]
\[1 - x = \frac{46\ 656}{15\ 625};\]
\[x = \frac{15\ 625}{15\ 625} - \frac{46\ 656}{15\ 625};\]
\[x = - \frac{31\ 031}{15\ 625} = - 1,985984;\]
\[Ответ:\ \ x = - 1,985984.\]
\[4)\ x^{2} + 3x + \sqrt{x^{2} + 3x} = 2;\]
\[Пусть\ y = \sqrt{x^{2} + 3x}:\]
\[y^{2} + y = 2;\]
\[y^{2} + y - 2 = 0;\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[y_{1} = \frac{- 1 - 3}{2} = - 2\ \ и\]
\[\text{\ \ }y_{2} = \frac{- 1 + 3}{2} = 1;\]
\[Первое\ значение:\]
\[\sqrt{x^{2} + 3x} = - 2 - нет\ корней;\]
\[Второе\ значение:\]
\[\sqrt{x^{2} + 3x} = 1;\]
\[x^{2} + 3x = 1;\]
\[x^{2} + 3x - 1 = 0;\]
\[D = 3^{2} + 4 = 9 + 4 = 13\]
\[x = \frac{- 3 \pm \sqrt{13}}{2};\]
\[Ответ:\ \ x = \frac{- 3 \pm \sqrt{13}}{2}.\]
\[5)\ \frac{\sqrt{3 - x} + \sqrt{3 + x}}{\sqrt{3 - x} - \sqrt{3 + x}} = 2;\]
\[\sqrt{3 - x} + \sqrt{3 + x} =\]
\[= 2\sqrt{3 - x} - 2\sqrt{3 + x};\]
\[3\sqrt{3 + x} = \sqrt{3 - x};\]
\[9(3 + x) = 3 - x;\]
\[27 + 9x = 3 - x;\]
\[10x = - 24;\]
\[x = - 2,4;\]
\[Выражение\ имеет\ смысл\ при:\]
\[3 - x \geq 0 \Longrightarrow \ \ \ x \leq 3;\]
\[3 + x \geq 0\ \ \Longrightarrow \ \ x \geq - 3;\]
\[Ответ:\ \ x = - 2,4.\]
\[6)\ \sqrt{x + 6 - 4\sqrt{x + 2}} +\]
\[+ \sqrt{11 + x - 6\sqrt{x + 2}} = 1;\]
\[\sqrt{x + 2 - 2 \bullet 2\sqrt{x + 2} + 4} +\]
\[+ \sqrt{x + 2 - 2 \bullet 3\sqrt{x + 2} + 9} = 1;\]
\[\sqrt{\left( \sqrt{x + 2} - 2 \right)^{2}} +\]
\[+ \sqrt{\left( \sqrt{x + 2} - 3 \right)^{2}} = 1;\]
\[\left| \sqrt{x + 2} - 2 \right| + \left| \sqrt{x + 2} - 3 \right| = 1;\]
\[Числа\ под\ знаком\ модуля:\]
\[\sqrt{x + 2} - 2 \geq 0\ \ \Longrightarrow \ \ \]
\[\Longrightarrow \ \sqrt{x + 2} \geq 2\ \Longrightarrow\]
\[\Longrightarrow \ \ \ x + 2 \geq 4 \Longrightarrow \ \ \ x \geq 2;\]
\[\sqrt{x + 2} - 3 \geq 0\ \ \Longrightarrow\]
\[\Longrightarrow \text{\ \ }\sqrt{x + 2} \geq 3\ \Longrightarrow \ \]
\[\Longrightarrow \ \ x + 2 \geq 9\ \ \ \Longrightarrow \ \ \ x \geq 7;\]
\[Если\ x \geq 7:\]
\[\sqrt{x + 2} - 2 + \sqrt{x + 2} - 3 = 1;\]
\[2\sqrt{x + 2} = 6;\]
\[\sqrt{x + 2} = 3;\]
\[x + 2 = 9;\]
\[x = 7;\]
\[Если\ 2 \leq x < 7:\]
\[\sqrt{x + 2} - 2 - \left( \sqrt{x + 2} - 3 \right) = 1;\]
\[\sqrt{x + 2} - \sqrt{x + 2} - 2 + 3 = 1;\]
\[1 = 1;\]
\[x - любое\ допустимое\ число;\]
\[Если\ x < 2:\]
\[- \left( \sqrt{x + 2} - 2 \right) -\]
\[- \left( \sqrt{x + 2} - 3 \right) = 1;\]
\[- 2\sqrt{x + 2} + 2 + 3 = 1;\]
\[4 = 2\sqrt{x + 2};\]
\[2 = \sqrt{x + 2};\]
\[4 = x + 2;\]
\[x = 2;\]
\[Выражение\ имеет\ смысл\ при:\]
\[x + 2 \geq 0;\]
\[x \geq - 2;\]
\[Ответ:\ \ 2 \leq x \leq 7.\]