Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 605

Авторы:
Тип:учебник

Задание 605

\[\boxed{\mathbf{605}.}\]

\[1)\ x + 1 = \sqrt{1 - x};\]

\[(x + 1)^{2} = 1 - x;\]

\[x^{2} + 2x + 1 = 1 - x;\]

\[x^{2} + 3x = 0;\]

\[x(x + 3) = 0;\]

\[x_{1} = 0\ \ и\ \ x_{2} = - 3;\]

\[Выражение\ имеет\ смысл\ при:\]

\[1 - x \geq 0;\]

\[x \leq 1;\]

\[Уравнение\ имеет\]

\[\ решения\ при:\]

\[x + 1 \geq 0;\]

\[x \geq - 1;\]

\[Ответ:\ \ x = 0.\]

\[2)\ x = 1 + \sqrt{x + 11};\]

\[x - 1 = \sqrt{x + 11};\]

\[(x - 1)^{2} = x + 11;\]

\[x^{2} - 2x + 1 = x + 11;\]

\[x^{2} - 3x - 10 = 0;\]

\[D = 3^{2} + 4 \bullet 10 = 9 + 40 = 49\]

\[x_{1} = \frac{3 - 7}{2} = - 2\ \ и\ \ \]

\[x_{2} = \frac{3 + 7}{2} = 5;\]

\[Выражение\ имеет\ смысл\ при:\]

\[x + 11 \geq 0;\]

\[x \geq - 11;\]

\[Уравнение\ имеет\ \]

\[решения\ при:\]

\[x - 1 \geq 0;\]

\[x \geq 1;\]

\[Ответ:\ \ x = 5.\]

\[3)\ \sqrt{x + 3} = \sqrt{5 - x};\]

\[x + 3 = 5 - x;\]

\[2x = 2;\]

\[x = 1;\]

\[Выражение\ имеет\ смысл\ при:\]

\[x + 3 \geq 0\ \ \Longrightarrow \ \ \ x \geq - 3;\]

\[5 - x \geq 0\ \Longrightarrow \ \ \ x \leq 5.\]

\[Ответ:\ \ x = 1.\]

\[4)\ \sqrt{x^{2} - x - 3} = 3;\]

\[x^{2} - x - 3 = 9;\]

\[x^{2} - x - 12 = 0;\]

\[D = 1^{2} + 4 \bullet 12 = 1 + 48 = 49\]

\[x_{1} = \frac{1 - 7}{2} = - 3\ \ и\ \]

\[\ x_{2} = \frac{1 + 7}{2} = 4;\]

\[Выполним\ проверку:\]

\[( - 3)^{2} - ( - 3) - 3 =\]

\[= 9 + 3 - 3 = 9 > 0;\]

\[4^{2} - 4 - 3 =\]

\[= 16 - 4 - 3 = 9 > 0.\]

\[Ответ:\ \ x_{1} = - 3;\ \ x_{2} = 4.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам