\[\boxed{\mathbf{584}.}\]
\[1)\ y = \frac{x + 5}{x + 3} = \frac{x + 3 + 2}{x + 3} =\]
\[= \frac{x + 3}{x + 3} + \frac{2}{x + 3} = 1 + \frac{2}{x + 3}\]
\[2)\ y = \frac{x - 7}{x - 1} = \frac{x - 1 - 6}{x - 1} =\]
\[= \frac{x - 1}{x - 1} - \frac{6}{x - 1} = 1 - \frac{6}{x - 1}\]
\[3)\ y = \frac{3x + 1}{x + 4} = \frac{3x + 12 - 11}{x + 4} =\]
\[= \frac{3 \cdot (x + 4) - 11}{x + 4} = 3 - \frac{11}{x + 4}\]
\[4)\ y = \frac{5x - 27}{x - 6} = \frac{5x - 30 + 3}{x - 6} =\]
\[= \frac{5 \cdot (x - 3) + 3}{x - 6} = 5 + \frac{3}{x - 6}\]