\[\boxed{\mathbf{529}.}\]
\[1)\ \frac{\sqrt{2} + 1}{\sqrt{2} - 1};\ \ 1;\ \ \frac{\sqrt{2} - 1}{\sqrt{2} + 1}\]
\[q = 1\ :\frac{\sqrt{2} + 1}{\sqrt{2} - 1} = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} =\]
\[= 3 - 2\sqrt{2};\]
\[b_{1} = \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} =\]
\[= \frac{2 + 2\sqrt{2} + 1}{2 - 1} = 3 + 2\sqrt{2};\]
\[S = \frac{b_{1}}{1 - q} = \frac{3 + 2\sqrt{2}}{1 - 3 + 2\sqrt{2}} =\]
\[= \frac{\left( 3 + 2\sqrt{2} \right)\left( 2\sqrt{2} + 2 \right)}{\left( 2\sqrt{2} - 2 \right)\left( 2\sqrt{2} + 2 \right)} =\]
\[= \frac{5\sqrt{2} + 7}{2}.\]
\[2)\ \frac{\sqrt{3} + 1}{\sqrt{3} - 1};\ \ 1;\ \ \frac{\sqrt{3} - 1}{\sqrt{3} + 1}\]
\[q = \frac{\sqrt{3} + 1}{\sqrt{3} - 1};\]
\[b_{1} = \frac{\left( \sqrt{3} + 1 \right)\left( \sqrt{3} + 1 \right)}{\left( \sqrt{3} - 1 \right)\left( \sqrt{3} + 1 \right)} =\]
\[= \frac{3 + 2\sqrt{3} + 1}{3 - 1} = \frac{4 + 2\sqrt{3}}{2} =\]
\[= 2 + \sqrt{3};\]
\[S = \frac{b_{1}}{1 - q} = \frac{2 + \sqrt{3}}{1 - \sqrt{3} + 2} =\]
\[= \frac{\left( 2 + \sqrt{3} \right)\left( 3 + \sqrt{3} \right)}{\left( 3 - \sqrt{3} \right)\left( 3 + \sqrt{3} \right)} =\]
\[= \frac{9 + 5\sqrt{3}}{9 - 3} = \frac{9 + 5\sqrt{3}}{6}.\]