Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 496

Авторы:
Тип:учебник

Задание 496

\[\boxed{\mathbf{496}.}\]

\[1)\ \left( 2a^{- 0,5} - \frac{1}{3}b^{- \sqrt{3}} \right) \bullet\]

\[\bullet \left( \frac{1}{3}b^{- \sqrt{3}} + 2a^{- 0,5} \right) =\]

\[= \left( 2a^{- \frac{1}{2}} \right)^{2} - \left( \frac{1}{3}b^{- \sqrt{3}} \right)^{2} =\]

\[= 4a^{- 1} - \frac{1}{9}b^{- 2\sqrt{3}} = \frac{4}{a} - \frac{1}{9b^{2\sqrt{3}}};\]

\[2)\ \left( m^{\frac{1 - \sqrt{5}}{1 + \sqrt{5}}} \right)^{- 3} \bullet m^{\frac{3\sqrt{5}}{2}} =\]

\[= m^{\frac{- 3\left( 1 - \sqrt{5} \right)}{1 + \sqrt{5}}} \bullet m^{\frac{3\sqrt{5}}{2}} =\]

\[= m^{\frac{3\sqrt{5} - 3}{1 + \sqrt{5}} + \frac{3\sqrt{5}}{2}} =\]

\[= m^{\frac{2\left( 3\sqrt{5} - 3 \right) + 3\sqrt{5}\left( 1 + \sqrt{5} \right)}{2\left( 1 + \sqrt{5} \right)}} =\]

\[= m^{\frac{6\sqrt{5} - 6 + 3\sqrt{5} + 15}{2\left( 1 + \sqrt{5} \right)}} = m^{\frac{9 + 9\sqrt{5}}{2\left( 1 + \sqrt{5} \right)}} =\]

\[= m^{\frac{9\left( 1 + \sqrt{5} \right)}{2\left( 1 + \sqrt{5} \right)}} = m^{\frac{9}{2}};\]

\[3)\ \left( a^{\sqrt[3]{2} + \sqrt[3]{3}} \right)^{\sqrt[3]{4} - \sqrt[3]{6} + \sqrt[3]{9}} =\]

\[= a^{\left( \sqrt[3]{2} + \sqrt[3]{3} \right)\left( \sqrt[3]{4} - \sqrt[3]{6} + \sqrt[3]{9} \right)} =\]

\[= a^{\sqrt[3]{8} - \sqrt[3]{12} + \sqrt[3]{18} + \sqrt[3]{12} - \sqrt[3]{18} + \sqrt[3]{27}} =\]

\[= a^{\sqrt[3]{8} + \sqrt[3]{27}} = a^{2 + 3} = a^{5};\]

\[4)\ \left( a^{\sqrt[3]{9} + \sqrt[3]{3} + 1} \right)^{1 - \sqrt[3]{3}} =\]

\[= a^{\left( \sqrt[3]{9} + \sqrt[3]{3} + 1 \right)\left( 1 - \sqrt[3]{3} \right)} =\]

\[= a^{\sqrt[3]{9} - \sqrt[3]{27} + \sqrt[3]{3} - \sqrt[3]{9} + 1 - \sqrt[3]{3}} =\]

\[= a^{- \sqrt[3]{27} + 1} = a^{- 3 + 1} = a^{- 2} = \frac{1}{a^{2}}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам