\[\boxed{\mathbf{459}.}\]
\[1)\ \frac{5 \cdot \sqrt{2 + \sqrt{3}}}{\sqrt{2 - \sqrt{3}} \cdot \sqrt{2 + \sqrt{3}}} =\]
\[= \frac{5\sqrt{2 + \sqrt{3}}}{\sqrt{4 - 3}} = 5\sqrt{2 + \sqrt{3}}\]
\[2)\ \frac{4 \cdot \sqrt{3 - \sqrt{5}}}{\sqrt{\sqrt{5} + 3} \cdot \sqrt{3 - \sqrt{5}}} =\]
\[= \frac{4 \cdot \sqrt{3 - \sqrt{5}}}{\sqrt{9 - 5}} = \frac{4 \cdot \sqrt{3 - \sqrt{5}}}{\sqrt{4}} =\]
\[= \frac{4 \cdot \sqrt{3 - \sqrt{5}}}{2} =\]
\[= 2 \cdot \sqrt{3 - \sqrt{5}}\]
\[3)\ \frac{\sqrt{\sqrt{5} + \sqrt{3}}}{\sqrt{\sqrt{5} - \sqrt{3}} \cdot \sqrt{\sqrt{5} + \sqrt{3}}} =\]
\[= \frac{\sqrt{\sqrt{5} + \sqrt{3}}}{\sqrt{5 - 3}} = \frac{\sqrt{\sqrt{5} + \sqrt{3}}}{\sqrt{2}} =\]
\[= \frac{\sqrt{\sqrt{5} + \sqrt{3}} \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} =\]
\[= \frac{\sqrt{2\left( \sqrt{5} + \sqrt{3} \right)}}{2}\]
\[4)\ \frac{11 \cdot \sqrt{7 + \sqrt{5}}}{\sqrt{7 - \sqrt{5}} \cdot \sqrt{7 + \sqrt{5}}} =\]
\[= \frac{11 \cdot \sqrt{7 + \sqrt{5}}}{\sqrt{49 - 5}} =\]
\[= \frac{11 \cdot \sqrt{7 + \sqrt{5}}}{\sqrt{44}} =\]
\[= \frac{11 \cdot \sqrt{11} \cdot \sqrt{7 + \sqrt{5}}}{2\sqrt{11} \cdot \sqrt{11}} =\]
\[= \frac{11 \cdot \sqrt{11 \cdot \left( 7 + \sqrt{5} \right)}}{2 \cdot 11} =\]
\[= \frac{\sqrt{11 \cdot \left( 7 + \sqrt{5} \right)}}{2}\]