\[\boxed{\mathbf{433}.}\]
\[S = \frac{16}{3};\ \ b_{n} = \frac{1}{6};\ \frac{S_{n - 1}}{S_{n + 1}} = 30.\]
\[S_{n - 1} = 30 \cdot S_{n + 1} = 30 \cdot \frac{b_{n + 1}}{1 - q};\]
\[S = S_{n - 1} + \frac{1}{6} + S_{n + 1} =\]
\[= 30 \cdot S_{n + 1} + \frac{1}{6} + S_{n + 1} =\]
\[= \frac{1}{6} + 31 \cdot S_{n + 1};\]
\[31S_{n + 1} = \frac{16}{3} - \frac{1}{6} = \frac{31}{6}\]
\[S_{n + 1} = \frac{1}{6}.\]
\[\frac{b_{n + 1}}{1 - q} = \frac{1}{6}:\]
\[\frac{S_{n + 1}}{S} = \frac{b_{n + 1}}{1 - q}\ :\frac{b_{1}}{1 - q} =\]
\[= \frac{b_{n + 1}}{b_{1}} = q^{n};\]
\[\frac{1}{6}\ :\frac{16}{3} = q^{n}\]
\[\frac{1}{32} = q^{n}\]
\[q^{n} = \left( \frac{1}{2} \right)^{5}\]
\[n = 5.\]
\[Ответ:n = 5.\]