\[\boxed{\mathbf{411}.}\]
\[1)\ \sqrt{3,9} + \sqrt{8}\text{\ \ }и\ \ \sqrt{1,1} + \sqrt{17};\]
\[\left( \sqrt{3,9} + \sqrt{8} \right)^{2} = 3,9 +\]
\[+ 2 \cdot \sqrt{3,9 \cdot 8} + 8 = 11,9 + \sqrt{31,2};\]
\[\left( \sqrt{1,1} + \sqrt{17} \right)^{2} = 1,1 +\]
\[+ 2\sqrt{1,1 \cdot 17} + 17 =\]
\[= 18,1 + 2\sqrt{18,7}.\]
\[Ответ:\ \ \sqrt{3,9} + \sqrt{8} < \sqrt{1,1} + \sqrt{17}.\]
\[2)\ \sqrt{11} - \sqrt{2,1}\ и\ \sqrt{10} - \sqrt{3,1};\]
\[\left( \sqrt{11} - \sqrt{2,1} \right)^{2} = 11 -\]
\[- 2\sqrt{11 \cdot 2,1} + 2,1 =\]
\[= 13,1 - 2\sqrt{23,1};\]
\[\left( \sqrt{10} - \sqrt{3,1} \right)^{2} = 10 -\]
\[- 2\sqrt{3,1 \cdot 10} + 3,1 =\]
\[= 13,1 - 2\sqrt{31}\]
\[Ответ:\ \ \sqrt{11} - \sqrt{2,1} > \sqrt{10} -\]
\[- \sqrt{3,1}.\]