\[\boxed{\mathbf{400}.}\]
\[1)\ \left\{ \begin{matrix} \frac{x}{y} + \frac{y}{x} = \frac{5}{2}\text{\ \ \ \ \ } \\ x^{2} + 2y^{2} = 6 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} \frac{x^{2} + y^{2}}{\text{xy}} = \frac{5}{2}\text{\ \ \ } \\ x^{2} + 2y^{2} = 6 \\ \end{matrix} \right.\ \ \]
\[2 \cdot \left( x^{2} + y^{2} \right) = 5xy\]
\[2x^{2} - 5xy + 2y^{2} = 0\]
\[D = 25y^{2} - 16y^{2} = 9y^{2}\]
\[x_{1} = \frac{5y + 3y}{4} = 2y;\ \ \]
\[\ x_{2} = \frac{5y - 3y}{4} = \frac{y}{2}.\]
\[1)\ x = 2y:\]
\[4y^{2} + 2y^{2} = 6\]
\[6y^{2} = 6\]
\[y^{2} = 1\]
\[y = \pm 1.\]
\[x = \pm 2.\]
\[2)\ x = \frac{y}{2};\ \ \ y = 2x:\]
\[x^{2} + 8x^{2} = 6\]
\[9x^{2} = 6\]
\[x^{2} = \frac{6}{9}\]
\[x = \pm \frac{\sqrt{6}}{3}.\]
\[y = \pm \frac{2\sqrt{6}}{3}.\]
\[Ответ:( - 2; - 1);(2;1);\]
\[\left( \frac{\sqrt{6}}{3};\frac{2\sqrt{6}}{3} \right);\ \ \left( - \frac{\sqrt{6}}{3}; - \frac{2\sqrt{6}}{3} \right).\]
\[2)\ \left\{ \begin{matrix} \frac{1}{x} - \frac{1}{y} = \frac{1}{6}\text{\ \ \ \ \ \ \ \ \ } \\ xy^{2} - x^{2}y = 6 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\frac{1}{x} = \frac{1}{6} + \frac{1}{y}\]
\[\frac{1}{x} = \frac{y + 6}{6y}\]
\[x = \frac{6y}{y + 6}\]
\[\left\{ \begin{matrix} x = \frac{6y}{y + 6}\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } \\ \frac{6y^{3}}{y + 6} - \frac{36y^{3}}{(y + 6)^{2}} = 6 \\ \end{matrix} \right.\ \]
\[\frac{6y^{3}}{y + 6} - \frac{36y^{3}}{(y + 6)^{2}} =\]
\[= 6\ \ \ \ \ | \cdot \left( \frac{(y + 6)^{2}}{6} \right)\]
\[y^{3}(y + 6) - 6y^{3} = (y + 6)^{2}\]
\[y^{4} + 6y^{3} - 6y^{3} =\]
\[= y^{2} + 12y + 36\]
\[y_{4} - y^{2} - 12y - 36 = 0\]
\[Делители:\ \pm 1;\ \pm 2;\ \pm 3;\ldots; \pm 36.\]
\[1\] | \[0\] | \[- 1\] | \[- 12\] | \[- 36\] | |
---|---|---|---|---|---|
\[3\] | \[1\] | \[3\] | \[8\] | \[12\] | \[0\] |
\[- 2\] | \[1\] | \[1\] | \[6\] | \[0\] |
\[P(y) = (y - 3)(y + 2)\left( y^{2} + y + 6 \right) = 0.\]
\[y^{2} + y + 6 = 0\]
\[D = 1 - 24 = - 23 < 0\]
\[нет\ корней.\]
\[y = 3:\]
\[x = \frac{6 \cdot 3}{3 + 6} = 2.\]
\[y = - 2:\]
\[x = \frac{- 6 \cdot 2}{- 2 + 6} = - \frac{12}{4} = - 3.\]
\[Ответ:( - 3; - 2);(2;3).\]
\[3)\ \left\{ \begin{matrix} x^{2} - xy + y^{2} = 21 \\ y^{2} - 2xy + 15 = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\ \left\{ \begin{matrix} x^{2} - xy + y^{2} = 21 \\ x = \frac{y^{2} + 15}{2y}\text{\ \ \ \ \ \ \ \ \ \ \ \ } \\ \end{matrix} \right.\ \]
\[x = \frac{y^{2} + 15}{2y}:\]
\[\frac{\left( y^{2} + 15 \right)^{2}}{4y^{2}} - \frac{y\left( y^{2} + 15 \right)}{2y} +\]
\[+ y^{2} = 21\ \ \ | \cdot 4y^{2}\]
\[y^{4} + 30y^{2} + 225 - 2y^{4} -\]
\[- 30y^{2} + 4y^{4} - 84y^{2} = 0\]
\[3y^{4} - 84y^{2} + 225 = 0\ \ \ \ \ |\ :3\]
\[y^{4} - 28y^{2} + 75 = 0\]
\[t = y^{2} \geq 0:\]
\[t^{2} - 28t + 75 = 0\]
\[D_{1} = 196 - 75 = 121\]
\[t_{1} = 14 + 11 = 25;\ \ \ \]
\[t_{2} = 14 - 11 = 3.\]
\[1)\ y^{2} = 25\]
\[y = \pm 5.\]
\[y = 5:\]
\[x = 4.\]
\[y = - 5:\]
\[x = - 4.\]
\[2)\ y^{2} = 3\]
\[y = \pm \sqrt{3}\]
\[y = \sqrt{3}:\]
\[x = 3\sqrt{3}.\]
\[y = - \sqrt{3}:\]
\[x = - 3\sqrt{3}.\]
\[Ответ:(4;5);( - 4; - 5);\left( 3;3\sqrt{3} \right);\]
\[\left( - 3; - 3\sqrt{3} \right).\]
\[4)\ \left\{ \begin{matrix} x^{2} - 3xy + 2y^{2} = 3\ \ \ | \cdot 2 \\ 2x^{2} - 2xy - y^{2} = - 6\ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\]
\[\left\{ \begin{matrix} 2x^{2} - 6xy + 4y^{2} = 6 \\ 2x^{2} - 2xy - y^{2} = - 6 \\ \end{matrix} \right.\ ( + )\]
\[4x^{2} - 8xy + 3y^{2} = 0\]
\[D = 64y^{2} - 48y^{2} = 16y^{2}\]
\[x_{1} = \frac{8y - 4y}{8} = \frac{y}{2};\ \ \ \]
\[x_{2} = \frac{8y + 4y}{8} = \frac{3y}{2}\]
\[1)\ x = \frac{y}{2} \rightarrow y = 2x:\]
\[x^{2} - 3x \cdot 2x + 2 \cdot (2x)^{2} = 3\]
\[x^{2} - 6x^{2} + 8x^{2} = 3\]
\[3x^{2} = 3\]
\[x^{2} = 1\]
\[x = \pm 1.\]
\[x = 1 \rightarrow y = 2;\]
\[x = - 1 \rightarrow y = - 2.\]
\[2)\ x = \frac{3y}{2}:\]
\[(1,5y)^{2} - 3y(1,5y) + 2y^{2} = 3\]
\[2,25y^{2} - 4,5y^{2} + 2y^{2} = 3\]
\[- 0,25y^{2} = 3\]
\[нет\ корней.\]
\[Ответ:(1;2);( - 1; - 2).\]