\[\boxed{\mathbf{388}.}\]
\[x^{3} - 9x^{2} + ax + b = 0;\ \ \]
\[x_{1} = 1;\ \ x_{2} = 5\]
\[P(1) = 1 - 9 + a + b =\]
\[= a + b - 8 = 0.\]
\[P(5) = 125 - 9 \cdot 25 + 5a + b =\]
\[= 5a + b - 100 = 0.\]
\[\left\{ \begin{matrix} a + b = 8\ \ \ \ \ \ \ \\ 5a + b = 100 \\ \end{matrix} \right.\ ( - )\]
\[- 4a = - 92\]
\[a = 23.\]
\[b = 8 - a = 8 - 23 = - 15.\]
\[Получили:\]
\[P(x) = x^{3} - 9x^{2} +\]
\[+ 23x - 15 = 0.\]
\[(x - 1)(x - 5) = x^{2} - x - 5x +\]
\[+ 5 = x^{2} - 6x + 5.\]
\[P(x) =\]
\[= (x - 1)(x - 5)(x - 3) = 0.\]
\[Ответ:x = 3;\ \ a = 23;\ \ \]
\[b = - 15.\]