\[\boxed{\mathbf{313}.}\]
\[P(x) = M_{1}(x)(x + 2) + 6;\]
\[P(x) = M_{2}(x)(x - 3) + 26;\]
\[P(x) = M_{3}(x)(x + 4) + 12;\]
\[P(x) =\]
\[= M_{4}(x)(x + 2)(x + 3)(x + 4) +\]
\[+ ax^{2} + bx + c.\]
\[x = - 2:\]
\[P( - 2) = 0 \cdot M_{1}(x) + 6 = 6;\]
\[P( - 2) = 0 \cdot M_{4}(x) + 4a - 2b +\]
\[+ c = 4a - 2b + c.\]
\[x = 3:\]
\[P(3) = 0 \cdot M_{2}(x) + 26 = 26;\]
\[P(3) = 0 \cdot M_{4}(x) + 9a + 3b +\]
\[+ c = 9a + 3b + c.\]
\[x = - 4:\]
\[P( - 4) = 0 \cdot M_{3}(x) + 12 = 12;\]
\[P( - 4) = 0 \cdot M_{4}(x) + 16a -\]
\[- 4b + c = 16a - 4b + c.\]
\[\left\{ \begin{matrix} 4a - b + c = 6 \rightarrow c = 6 - 4a + 2b \\ 9a + 3b + c = 26\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 16a - 4b + c = 12\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 9a + 3b + 6 - 4a + 2b = 26\ \ \\ 16a - 4b + 6 - 4a + 2b = 12 \\ \end{matrix} \right.\ \]
\[\left\{ \begin{matrix} 5a + 5b = 20\ \ |\ :5 \\ 12a - 2b = 6\ \ |\ :2 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} a + b = 4\ \ \ \\ 6a - b = 3 \\ \end{matrix} \right.\ ( + )\]
\[7a = 7\]
\[a = 1;\]
\[b = 4 - a = 4 - 1 = 3;\]
\[c = 6 - 4a + 2b =\]
\[= 6 - 4 + 6 = 8.\]
\[Ответ:x^{2} + 3x + 8.\]