Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 298

Авторы:
Тип:учебник

Задание 298

\[\boxed{\mathbf{298}.}\]

\[1)\ \left( 6x^{3} - 11x^{2} - 1 \right)\ :(x - 2)\]

\[6\] \[- 11\] \[0\] \[- 1\]
\[2\] \[6\] \[- 11 + 12 = 1\] \[2\] \[- 1 + 4 = 3\]

\[P(x) =\]

\[= (x - 2)\left( 6x^{2} + x + 2 \right) + 3.\]

\[2)\ \left( 2x^{4} - x^{3} - x^{2} + 3x - 2 \right)\ :\]

\[:(x + 2)\]

\[2\] \[- 1\] \[- 1\] \[3\] \[- 2\]
\[- 2\] \[2\] \[- 5\] \[9\] \[- 15\] \[28\]

\[P(x) = (x + 2)\left( 2x^{3} - 5x^{2} + 9x - 15 \right) + 28.\]

\[3)\ \left( 3x^{5} + 3x^{4} + x^{3} - x - 2 \right)\ :\]

\[:(x + 1)\]

\[3\] \[3\] \[1\] \[0\] \[- 1\] \[- 2\]
\[- 1\] \[3\] \[0\] \[1\] \[- 1\] \[0\] \[- 2\]

\[P(x) =\]

\[= (x - 1)\left( 3x^{4} + x^{2} - x \right) - 2.\]

\[4)\ \left( 3x^{3} + 4x^{2} \right)\ :(3x + 2)\]

\[1\] \[\frac{4}{3}\] \[0\] \[0\]
\[- \frac{2}{3}\] \[1\] \[\frac{2}{3}\] \[- \frac{4}{9}\] \[\frac{8}{9}\]

\[P(x) =\]

\[= (3x + 2)\left( x^{2} + \frac{2}{3}x - \frac{4}{9} \right) + \frac{8}{9}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам