\[\boxed{\mathbf{292}.}\]
\[1)\ \left( 6x^{2} + 7x + a \right)\ :(2x + 3) =\]
\[= 3x - 1\ (ост.\ a + 3)\]
\[a + 3 = 0\]
\[a = - 3.\]
\[P(x) = (2x + 3)(bx + c) =\]
\[= 2bx^{2} + 3bx + 2xc + 3c =\]
\[= 2bx^{2} + (3b + 1c)x + 3c\]
\[\left\{ \begin{matrix} 2b = 6\ \ \ \ \ \ \ \ \ \ \\ 3b + 2c = 7 \\ 3c = a\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ }\left\{ \begin{matrix} b = 3\ \ \ \\ c = - 1 \\ a = - 3 \\ \end{matrix} \right.\ \]
\[Ответ:при\ a = - 3.\]
\[= bx^{6} + (b + c)x^{5} + (c + d)x^{4} +\]
\[+ (d + k)x^{3} + (k + l)x^{2} +\]
\[+ (l + m)x + m\]
\[b = 1:\]
\[b + c = 1\]
\[c = 0.\]
\[c = 0:\]
\[c + d = - 4\]
\[d = - 4.\]
\[d + k = - 4\]
\[k = 0.\]
\[a + m = 4;\ \ \ a = m\]
\[2a = 4\]
\[a = 2.\]
\[Ответ:при\ a = 2.\]
\[3)\ P(x) =\]
\[= (x - 3)\left( bx^{2} + cx + d \right) =\]
\[= bx^{3} + (c - 3b)x^{2} +\]
\[+ (d - 3c)x - 3d\]
\[\left\{ \begin{matrix} b = 1\ \ \ \ \ \ \ \ \ \ \ \\ c - 3b = a \\ d - 3c = a \\ - 3d = - 15 \\ \end{matrix} \right.\ \rightarrow d = 5;\ \]
\[\ c = a + 3\]
\[d - 3c = a\]
\[5 - 3 \cdot (a + 3) = a\]
\[5 - 3a - 9 = a\]
\[4a = - 4\]
\[a = - 1,\]
\[Ответ:при\ a = - 1.\]
\[4)\ P(x) = (4x + 5)(bx + c) =\]
\[= 4bx^{2} + (5b + 4c)x + 5c\]
\[\left\{ \begin{matrix} \begin{matrix} 4b = - 4\ \ \ \ \ \ \\ 5b + 4c = a \\ \end{matrix} \\ 5c = 5\ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[\left\{ \begin{matrix} b = - 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ c = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ a = - 5 + 4 = - 1 \\ \end{matrix} \right.\ \]
\[Ответ:при\ a = - 1.\]