\[\boxed{\mathbf{184}.}\]
\[1)\ b_{1} = 5;\ \ q = - 2;\ \ S_{n} = 215:\]
\[S_{n} = \frac{b_{1} \cdot \left( 1 - q^{n} \right)}{1 - q}\]
\[215 = \frac{5 \cdot \left( 1 - ( - 2)^{n} \right)}{1 + 2}\ \ \ \ \ |\ :5\]
\[43 = \frac{1 - ( - 2)^{n}}{3}\]
\[129 = 1 - ( - 2)^{n}\]
\[( - 2)^{n} = - 128\]
\[( - 2)^{n} = ( - 2)^{7}\]
\[n = 7.\]
\[Ответ:n = 7.\]
\[2)\ b_{1} = - 6;\ \ q = 2;\ \ S = - 378:\]
\[S_{n} = \frac{b_{1} \cdot \left( 1 - q^{n} \right)}{1 - q}\]
\[- 378 = \frac{- 6 \cdot \left( 1 - 2^{n} \right)}{1 - 2}\ \ \ \ \ |\ :( - 6)\]
\[63 = \frac{1 - 2^{n}}{- 1}\]
\[2^{n} - 1 = 63\]
\[2^{n} = 64\]
\[2^{n} = 2^{6}\]
\[n = 6.\]
\[Ответ:n = 6.\]