\[\boxed{\mathbf{165}.}\]
\[1)\ y = \sqrt[3]{\frac{5x - 3}{x - 4}}\]
\[x - 4 \neq 0\]
\[x \neq 4.\]
\[ООФ:x \in ( - \infty;4) \cup (4; + \infty).\]
\[2)\ y = \sqrt{\frac{x^{2} - 5}{x + 1}}\]
\[\frac{x^{2} - 5}{x + 1} \geq 0;\ \ x + 1 \neq 0;x \neq - 1\]
\[\frac{\left( x + \sqrt{5} \right)\left( x - \sqrt{5} \right)}{x + 1} \geq 0\]
\[ООФ:\ \]
\[x \in \left\lbrack - \sqrt{5};\ - 1 \right) \cup \left\lbrack \sqrt{5}; + \infty \right).\]