\[\boxed{\mathbf{156}.}\]
\[1)\ \sqrt{5x^{2} + 9x - 2}\]
\[5x^{2} + 9x - 2 \geq 0\]
\[D = 81 + 40 = 121\]
\[x_{1} = \frac{- 9 - 11}{10} = - 2;\ \]
\[\ x_{2} = \frac{- 9 + 11}{10} = 0,2.\]
\[5 \cdot (x + 2)(x - 0,2) \geq 0\]
\[Ответ:x \leq - 2;\ \ x \geq 0,2.\]
\[2)\ \sqrt{- 3x^{2} + x + 4}\]
\[- 3x^{2} + x + 4 \geq 0\]
\[3x^{2} - x - 4 \leq 0\]
\[D = 1 + 48 = 49\]
\[x_{1} = \frac{1 + 7}{6} = \frac{8}{6} = \frac{4}{3} = 1\frac{1}{3};\ \ \]
\[x_{2} = \frac{1 - 7}{6} = - 1.\]
\[3 \cdot (x + 1)\left( x - 1\frac{1}{3} \right) \geq 0\]
\[Ответ:\left\lbrack - 1;1\frac{1}{3} \right\rbrack.\]
\[3)\ \frac{1}{\sqrt{- x^{2} + 2x - 1}}\]
\[- x^{2} + 2x - 1 > 0\]
\[x^{2} - 2x + 1 < 0\]
\[(x - 1)^{2} < 0\]
\[Ответ:нет\ корней.\]
\[4)\ \frac{5}{\sqrt{x^{2} + 6x + 9}}\]
\[x^{2} + 6x + 9 > 0\]
\[(x + 3)^{2} > 0\]
\[Ответ:x - любое\ число,\ \]
\[кроме\ x = - 3.\]