\[\boxed{\mathbf{1272}\mathbf{.}}\]
\[\sin^{4}x + \cos^{4}x = a\]
\[\sin^{4}x + \cos^{4}x + 2\sin^{2}x \bullet\]
\[\bullet \cos^{2}x - 2\sin^{2}x \bullet \cos^{2}x = a\]
\[\left( \sin^{2}x + \cos^{2}x \right)^{2} - 2\sin^{2}x \bullet\]
\[\bullet \cos^{2}x = a\]
\[1 - 2\sin^{2}x \bullet \cos^{2}x = a\]
\[1 - a = \frac{1}{2} \bullet 4\sin^{2}x \bullet \cos^{2}x\]
\[\frac{1}{2}\sin^{2}{2x} = 1 - a\]
\[\sin^{2}{2x} = 2 - 2a\]
\[\frac{1 - \cos{4x}}{2} = 2 - 2a\]
\[1 - \cos{4x} = 4 - 4a\]
\[- \cos{4x} = 3 - 4a\]
\[\cos{4x} = 4a - 3\]
\[4x = \pm \arccos(4a - 3) + 2\pi n\]
\[x = \pm \frac{1}{4}\arccos(4a - 3) + \frac{\text{πn}}{2}.\]
\[Допустимые\ значения\ числа\ a:\]
\[- 1 \leq \cos{4x} \leq 1\]
\[- 1 \leq 4a - 3 \leq 1\]
\[2 \leq 4a \leq 4\]
\[\frac{1}{2} \leq a \leq 1.\]
\[Ответ:\ \ \frac{1}{2} \leq a \leq 1;\]
\[\ \ x = \pm \frac{1}{4}\arccos(4a - 3) + \frac{\text{πn}}{2}.\]