\[\boxed{\mathbf{1264}\mathbf{.}}\]
\[1)\ \left\{ \begin{matrix} \text{ct}g^{2}x + 32\sin^{2}y = 35 \\ \frac{1}{\sin^{2}{2x}} - 4\cos y = 5\ \ \ \\ \end{matrix} \right.\ \]
\[\text{ct}g^{2}x + 32\sin^{2}y - \frac{1}{\sin^{2}{2x}} +\]
\[+ 4\cos y = 30\]
\[32{\sin^{2}\ }y + 4\cos y - 31 = 0\]
\[- 32\cos^{2}y + 4\cos y + 1 = 0\]
\[Пусть\cos y = t:\]
\[32t^{2} - 4t - 1 = 0\]
\[D_{1} = 4 + 32 = 36\]
\[t_{1} = \frac{2 + 6}{32} = \frac{1}{4};\ \ \ \ \]
\[\ t_{2} = \frac{2 - 6}{32} = - \frac{1}{8}.\]
\[\cos y = \frac{1}{4}\]
\[y = \pm \arccos\frac{1}{4} + \pi n.\]
\[\cos y = - \frac{1}{8}\]
\[y = \pm \left( \pi - \arccos\frac{1}{8} \right) + \pi n.\]
\[\text{ct}g^{2}2x = 35 - 32\sin^{2}y\]
\[\text{ct}g^{2}2x = 35 -\]
\[- 32\sin^{2}\left( \pm \arccos\frac{1}{4} + \pi n \right) = 5\]
\[\text{ct}g^{2}2x = 35 -\]
\[- 32\sin\left( \pm \left( \pi - \arccos\frac{1}{4} + \pi n \right) + \pi n \right) = \frac{7}{2}\]
\[tg^{2}x = \frac{1}{5}\]
\[x = \pm arctg\frac{1}{\sqrt{5}} + \pi n.\]
\[tg^{2}x = \frac{2}{7}\]
\[x = \pm arctg\ \sqrt{\frac{2}{7}} + \pi n.\]
\[Ответ:\ \]
\[\left\{ \begin{matrix} x = \pm arctg\frac{1}{\sqrt{5}} + \pi n \\ y = \pm \arccos\frac{1}{4} + \pi n \\ \end{matrix} \right.\ \text{\ \ \ \ \ }или\ \ \ \ \ \ \]
\[\left\{ \begin{matrix} x = \pm arctg\ \sqrt{\frac{2}{7}} + \pi n\ \ \ \ \ \ \ \ \ \ \ \\ y = \pm \left( \pi - \arccos\frac{1}{8} \right) + \pi n \\ \end{matrix} \right.\ \]
\[2)\ \left\{ \begin{matrix} tg\ x + tg\ y + tg\ x\ tg\ y = 1 \\ \sin{2y} - \sqrt{2}\sin x = 1\ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[Если\ \ y = - x + \frac{\pi}{4}:\]
\[tg\ x + tg\ \left( \frac{\pi}{4} - x \right) +\]
\[+ \text{tg\ x\ tg}\left( - x + \frac{\pi}{4} \right) + 1.\]
\[Для\ любого\ x:\]
\[y = - x + \frac{\pi}{4} + \pi n.\]
\[\sin\left( - 2x + \frac{\pi}{2} + 2\pi n \right) -\]
\[- \sqrt{2}\sin x = \cos{2x} -\]
\[- \sqrt{2}\sin x = 1\]
\[1 - 2\sin^{2}x - \sqrt{2}\sin x = 1\]
\[\sqrt{2}\sin^{2}x - \sin x = 0\]
\[\sin x = 0\]
\[x = \pi k.\]
\[\sqrt{2}\sin x = 1\]
\[\sin x = \frac{1}{\sqrt{2}}\]
\[x = ( - 1)^{n} \cdot \frac{\pi}{4} + \pi k\]
\[x = \frac{\pi}{4} + 2\pi k;\ \ \ x = \frac{3\pi}{4} + 2\pi k.\]
\[Ответ:\ \]
\[\textbf{а)}\ \left\{ \begin{matrix} x = \pi k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = - x + \frac{\pi}{4} + \pi n \\ \end{matrix} \right.\ \ \ \ \ \ \ \rightarrow\]
\[\rightarrow \left\{ \begin{matrix} x = \pi k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = \frac{\pi}{4} - \pi k + \pi n \\ \end{matrix} \right.\ \]
\[\textbf{б)}\ \left\{ \begin{matrix} x = \frac{\pi}{4} + 2\pi k\ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = 2\pi + \pi n - 2\pi k\ \\ \end{matrix} \right.\ \]
\[\textbf{в)}\ \left\{ \begin{matrix} x = \frac{3\pi}{4} + 2\pi k\ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = - \frac{\pi}{2} + \pi n - 2\pi k \\ \end{matrix} \right.\ \]
\[3)\ \left\{ \begin{matrix} \cos{2x} - 2\cos^{2}y + 2 = 0 \\ \cos x\sqrt{\cos y} = 0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \end{matrix} \right.\ \]
\[\cos x = 0 \rightarrow x = \frac{\pi}{2} + \pi n.\]
\[\cos y = 0 \rightarrow y = \frac{\pi}{2} + \pi n.\]
\[\textbf{а)}\ x = \frac{\pi}{2} + \pi n:\]
\[\cos(\pi + 2\pi n) - 2\sin^{2}y + 2 =\]
\[= 1 - 2\sin^{2}y - \cos{2y} = 0\]
\[\cos{2y} = 0\]
\[2y = \frac{\pi}{2} + \pi k\]
\[y = \frac{\pi}{4} + \frac{\text{πk}}{2}.\]
\[Нам\ подходят:\]
\[y = \pm \frac{\pi}{4} + 2\pi k.\]
\[\textbf{б)}\ y = \frac{\pi}{2} + \pi k\]
\[\cos{2x} - 2\cos\left( \frac{\pi}{2} + \pi k \right) + 2 =\]
\[= \cos{2x} + 2 = 0\]
\[Нет\ решений.\]
\[Ответ:\ \]
\[\left\{ \begin{matrix} x = \frac{\pi}{2} + 2\pi n\ \ \ \ \\ y = \pm \frac{\pi}{4} + 2\pi k \\ \end{matrix} \right.\ \]
\[4)\ \left\{ \begin{matrix} \sqrt{1 + \sin x\sin y} = \cos y \\ 2ctg\ x\sin y + \sqrt{3} = 0\ \ \ \\ \end{matrix} \right.\ \]
\[1 + \sin x\sin y = \cos^{2}y\]
\[1 - \cos^{2}y + \sin x\sin y = 0\]
\[\sin^{2}y + \sin x\sin y = 0\]
\[\sin y\left( \sin y + \sin x \right) = 0\]
\[\sin y = 0\]
\[y = \pi n.\]
\[\sin x + \sin y = 0\]
\[2\sin\frac{x + y}{2}\cos\frac{y - x}{2} = 0\]
\[\sin\frac{x + y}{2} = 0\]
\[\frac{x + y}{2} = \text{πn}\]
\[y = - x + 2\text{πn.}\]
\[\cos\frac{y - x}{2} = 0\]
\[\frac{y - x}{2} = \frac{\pi}{2} + \pi n\]
\[y = x + \pi + 2\pi n.\]
\[Нам\ подходит\ корень\ y = 2\pi n:\]
\[2ctg\ x\sin{2\pi n} + \sqrt{3} = 0\]
\[1)\ \ \left\{ \begin{matrix} y = - x + 2\pi n\ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ 2ctg\ x\sin y + \sqrt{3} = 0 \\ \end{matrix} \right.\ \text{\ \ \ \ \ \ \ }\]
\[2)\ \left\{ \begin{matrix} y = x + \pi + 2\pi n\ \ \ \ \ \ \ \ \ \\ 2ctg\ x\sin y + \sqrt{3} = 0 \\ \end{matrix} \right.\ \]
\[0 + \sqrt{3} = 0\]
\[нет\ решений.\]
\[Первый\ случай:\]
\[- 2ctg\ x\sin x + \sqrt{3} = 0\]
\[- 2\cos x + \sqrt{3} = 0\]
\[\cos x = \frac{\sqrt{3}}{2}\]
\[x = \pm \frac{\pi}{6} + 2\pi k.\]
\[Второй\ случай:\]
\[- 2ctg\ x\sin x + \sqrt{3} = 0\]
\[x = \pm \frac{\pi}{6} + 2\pi k.\]
\[Нам\ подходят:\]
\[\left\{ \begin{matrix} x = \frac{\pi}{6} + 2\pi k\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ y = - \frac{\pi}{6} - 2\pi k + 2\pi n \\ \end{matrix} \right.\ \text{\ \ \ \ \ }и\ \ \ \ \ \]
\[\left\{ \begin{matrix} x = - \frac{\pi}{6} + 2\pi k\ \ \ \ \ \ \ \ \ \\ y = \frac{\pi}{6} + 2\pi n - 2\pi k \\ \end{matrix} \right.\ \]